亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Extracting users' interests from their lifelong behavior sequence is crucial for predicting Click-Through Rate (CTR). Most current methods employ a two-stage process for efficiency: they first select historical behaviors related to the candidate item and then deduce the user's interest from this narrowed-down behavior sub-sequence. This two-stage paradigm, though effective, leads to information loss. Solely using users' lifelong click behaviors doesn't provide a complete picture of their interests, leading to suboptimal performance. In our research, we introduce the Deep Group Interest Network (DGIN), an end-to-end method to model the user's entire behavior history. This includes all post-registration actions, such as clicks, cart additions, purchases, and more, providing a nuanced user understanding. We start by grouping the full range of behaviors using a relevant key (like item_id) to enhance efficiency. This process reduces the behavior length significantly, from O(10^4) to O(10^2). To mitigate the potential loss of information due to grouping, we incorporate two categories of group attributes. Within each group, we calculate statistical information on various heterogeneous behaviors (like behavior counts) and employ self-attention mechanisms to highlight unique behavior characteristics (like behavior type). Based on this reorganized behavior data, the user's interests are derived using the Transformer technique. Additionally, we identify a subset of behaviors that share the same item_id with the candidate item from the lifelong behavior sequence. The insights from this subset reveal the user's decision-making process related to the candidate item, improving prediction accuracy. Our comprehensive evaluation, both on industrial and public datasets, validates DGIN's efficacy and efficiency.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 穩健性 · Extensibility · motivation · Performer ·
2024 年 1 月 11 日

Counterfactual Explanation (CE) techniques have garnered attention as a means to provide insights to the users engaging with AI systems. While extensively researched in domains such as medical imaging and autonomous vehicles, Graph Counterfactual Explanation (GCE) methods have been comparatively under-explored. GCEs generate a new graph similar to the original one, with a different outcome grounded on the underlying predictive model. Among these GCE techniques, those rooted in generative mechanisms have received relatively limited investigation despite demonstrating impressive accomplishments in other domains, such as artistic styles and natural language modelling. The preference for generative explainers stems from their capacity to generate counterfactual instances during inference, leveraging autonomously acquired perturbations of the input graph. Motivated by the rationales above, our study introduces RSGG-CE, a novel Robust Stochastic Graph Generator for Counterfactual Explanations able to produce counterfactual examples from the learned latent space considering a partially ordered generation sequence. Furthermore, we undertake quantitative and qualitative analyses to compare RSGG-CE's performance against SoA generative explainers, highlighting its increased ability to engendering plausible counterfactual candidates.

Extensible Markup Language (XML) is a widely used file format for data storage and transmission. Many XML processors support XPath, a query language that enables the extraction of elements from XML documents. These systems can be affected by logic bugs, which are bugs that cause the processor to return incorrect results. In order to tackle such bugs, we propose a new approach, which we realized as a system called XPress. As a test oracle, XPress relies on differential testing, which compares the results of multiple systems on the same test input, and identifies bugs through discrepancies in their outputs. As test inputs, XPress generates both XML documents and XPath queries. Aiming to generate meaningful queries that compute non-empty results, XPress selects a so-called targeted node to guide the XPath expression generation process. Using the targeted node, XPress generates XPath expressions that reference existing context related to the targeted node, such as its tag name and attributes, while also guaranteeing that a predicate evaluates to true before further expanding the query. We tested our approach on six mature XML processors, BaseX, eXist-DB, Saxon, PostgreSQL, libXML2, and a commercial database system. In total, we have found 20 unique bugs in these systems, of which 25 have been verified by the developers, and 12 of which have been fixed. XPress is efficient, as it finds 12 unique bugs in BaseX in 24 hours, which is 2x as fast as naive random generation. We expect that the effectiveness and simplicity of our approach will help to improve the robustness of many XML processors.

This work introduces a new class of Runge-Kutta methods for solving nonlinearly partitioned initial value problems. These new methods, named nonlinearly partitioned Runge-Kutta (NPRK), generalize existing additive and component-partitioned Runge-Kutta methods, and allow one to distribute different types of implicitness within nonlinear terms. The paper introduces the NPRK framework and discusses order conditions, linear stability, and the derivation of implicit-explicit and implicit-implicit NPRK integrators. The paper concludes with numerical experiments that demonstrate the utility of NPRK methods for solving viscous Burger's and the gray thermal radiation transport equations.

Despite recent advances, Automatic Speech Recognition (ASR) systems are still far from perfect. Typical errors include acronyms, named entities and domain-specific special words for which little or no data is available. To address the problem of recognizing these words, we propose an self-supervised continual learning approach. Given the audio of a lecture talk with corresponding slides, we bias the model towards decoding new words from the slides by using a memory-enhanced ASR model from previous work. Then, we perform inference on the talk, collecting utterances that contain detected new words into an adaptation dataset. Continual learning is then performed on this set by adapting low-rank matrix weights added to each weight matrix of the model. The whole procedure is iterated for many talks. We show that with this approach, we obtain increasing performance on the new words when they occur more frequently (more than 80% recall) while preserving the general performance of the model.

Forensic handwriting examination is a branch of Forensic Science that aims to examine handwritten documents in order to properly define or hypothesize the manuscript's author. These analysis involves comparing two or more (digitized) documents through a comprehensive comparison of intrinsic local and global features. If a correlation exists and specific best practices are satisfied, then it will be possible to affirm that the documents under analysis were written by the same individual. The need to create sophisticated tools capable of extracting and comparing significant features has led to the development of cutting-edge software with almost entirely automated processes, improving the forensic examination of handwriting and achieving increasingly objective evaluations. This is made possible by algorithmic solutions based on purely mathematical concepts. Machine Learning and Deep Learning models trained with specific datasets could turn out to be the key elements to best solve the task at hand. In this paper, we proposed a new and challenging dataset consisting of two subsets: the first consists of 21 documents written either by the classic ``pen and paper" approach (and later digitized) and directly acquired on common devices such as tablets; the second consists of 362 handwritten manuscripts by 124 different people, acquired following a specific pipeline. Our study pioneered a comparison between traditionally handwritten documents and those produced with digital tools (e.g., tablets). Preliminary results on the proposed datasets show that 90% classification accuracy can be achieved on the first subset (documents written on both paper and pen and later digitized and on tablets) and 96% on the second portion of the data. The datasets are available at //iplab.dmi.unict.it/mfs/forensic-handwriting-analysis/novel-dataset-2023/.

We examine visual representations of data that make use of combinations of both 2D and 3D data mappings. Combining 2D and 3D representations is a common technique that allows viewers to understand multiple facets of the data with which they are interacting. While 3D representations focus on the spatial character of the data or the dedicated 3D data mapping, 2D representations often show abstract data properties and take advantage of the unique benefits of mapping to a plane. Many systems have used unique combinations of both types of data mappings effectively. Yet there are no systematic reviews of the methods in linking 2D and 3D representations. We systematically survey the relationships between 2D and 3D visual representations in major visualization publications -- IEEE VIS, IEEE TVCG, and EuroVis -- from 2012 to 2022. We closely examined 105 papers where 2D and 3D representations are connected visually, interactively, or through animation. These approaches are designed based on their visual environment, the relationships between their visual representations, and their possible layouts. Through our analysis, we introduce a design space as well as provide design guidelines for effectively linking 2D and 3D visual representations.

FTLE (Finite Time Lyapunov Exponent) computation is one of the standard approaches to Lagrangian flow analysis. The main features of interest in FTLE fields are ridges that represent hyperbolic Lagrangian Coherent Structures. FTLE ridges tend to become sharp and crisp with increasing integration time, where the sharpness of the ridges is an indicator of the strength of separation. The additional consideration of uncertainty in flows leads to more blurred ridges in the FTLE fields. There are multiple causes for such blurred ridges: either the locations of the ridges are uncertain, or the strength of the ridges is uncertain, or there is low uncertainty but weak separation. Existing approaches for uncertain FTLE computation are unable to distinguish these different sources of uncertainty in the ridges. We introduce a new approach to define and visualize FTLE fields for flow ensembles. Before computing and comparing FTLE fields for the ensemble members, we compute optimal displacements of the domains to mutually align the ridges of the ensemble members as much as possible. We do so in a way that an explicit geometry extraction and alignment of the ridges is not necessary. The additional consideration of these displacements allows for a visual distinction between uncertainty in ridge location, ridge sharpness, and separation strength. We apply the approach to several synthetic and real ensemble data sets.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司