Gradient inversion attack (or input recovery from gradient) is an emerging threat to the security and privacy preservation of Federated learning, whereby malicious eavesdroppers or participants in the protocol can recover (partially) the clients' private data. This paper evaluates existing attacks and defenses. We find that some attacks make strong assumptions about the setup. Relaxing such assumptions can substantially weaken these attacks. We then evaluate the benefits of three proposed defense mechanisms against gradient inversion attacks. We show the trade-offs of privacy leakage and data utility of these defense methods, and find that combining them in an appropriate manner makes the attack less effective, even under the original strong assumptions. We also estimate the computation cost of end-to-end recovery of a single image under each evaluated defense. Our findings suggest that the state-of-the-art attacks can currently be defended against with minor data utility loss, as summarized in a list of potential strategies. Our code is available at: //github.com/Princeton-SysML/GradAttack.
Even though recent years have seen many attacks exposing severe vulnerabilities in federated learning (FL), a holistic understanding of what enables these attacks and how they can be mitigated effectively is still lacking. In this work we demystify the inner workings of existing targeted attacks. We provide new insights into why these attacks are possible and why a definitive solution to FL robustness is challenging. We show that the need for ML algorithms to memorize tail data has significant implications for FL integrity. This phenomenon has largely been studied in the context of privacy; our analysis sheds light on its implications for ML integrity. In addition, we show how constraints on client updates can effectively improve robustness. To incorporate these constraints into secure FL protocols, we design and develop RoFL, a new secure FL system that enables constraints to be expressed and enforced on high-dimensional encrypted model updates. In essence, RoFL augments existing secure FL aggregation protocols with zero-knowledge proofs. Due to the scale of FL, realizing these checks efficiently presents a paramount challenge. We introduce several optimizations at the ML layer that allow us to reduce the number of cryptographic checks needed while preserving the effectiveness of our defenses. We show that RoFL scales to the sizes of models used in real-world FL deployments.
Federated Learning (FL) is a privacy preserving machine learning scheme, where training happens with data federated across devices and not leaving them to sustain user privacy. This is ensured by making the untrained or partially trained models to reach directly the individual devices and getting locally trained "on-device" using the device owned data, and the server aggregating all the partially trained model learnings to update a global model. Although almost all the model learning schemes in the federated learning setup use gradient descent, there are certain characteristic differences brought about by the non-IID nature of the data availability, that affects the training in comparison to the centralized schemes. In this paper, we discuss the various factors that affect the federated learning training, because of the non-IID distributed nature of the data, as well as the inherent differences in the federating learning approach as against the typical centralized gradient descent techniques. We empirically demonstrate the effect of number of samples per device and the distribution of output labels on federated learning. In addition to the privacy advantage we seek through federated learning, we also study if there is a cost advantage while using federated learning frameworks. We show that federated learning does have an advantage in cost when the model sizes to be trained are not reasonably large. All in all, we present the need for careful design of model for both performance and cost.
Model inversion attacks (MIAs) aim to create synthetic images that reflect the class-wise characteristics from a target classifier's training data by exploiting the model's learned knowledge. Previous research has developed generative MIAs using generative adversarial networks (GANs) as image priors that are tailored to a specific target model. This makes the attacks time- and resource-consuming, inflexible, and susceptible to distributional shifts between datasets. To overcome these drawbacks, we present Plug & Play Attacks that loosen the dependency between the target model and image prior and enable the use of a single trained GAN to attack a broad range of targets with only minor attack adjustments needed. Moreover, we show that powerful MIAs are possible even with publicly available pre-trained GANs and under strong distributional shifts, whereas previous approaches fail to produce meaningful results. Our extensive evaluation confirms the improved robustness and flexibility of Plug & Play Attacks and their ability to create high-quality images revealing sensitive class characteristics.
We address the issue of tuning hyperparameters (HPs) for imitation learning algorithms in the context of continuous-control, when the underlying reward function of the demonstrating expert cannot be observed at any time. The vast literature in imitation learning mostly considers this reward function to be available for HP selection, but this is not a realistic setting. Indeed, would this reward function be available, it could then directly be used for policy training and imitation would not be necessary. To tackle this mostly ignored problem, we propose a number of possible proxies to the external reward. We evaluate them in an extensive empirical study (more than 10'000 agents across 9 environments) and make practical recommendations for selecting HPs. Our results show that while imitation learning algorithms are sensitive to HP choices, it is often possible to select good enough HPs through a proxy to the reward function.
Deep neural networks are vulnerable to adversarial examples that mislead the models with imperceptible perturbations. Though adversarial attacks have achieved incredible success rates in the white-box setting, most existing adversaries often exhibit weak transferability in the black-box setting, especially under the scenario of attacking models with defense mechanisms. In this work, we propose a new method called variance tuning to enhance the class of iterative gradient based attack methods and improve their attack transferability. Specifically, at each iteration for the gradient calculation, instead of directly using the current gradient for the momentum accumulation, we further consider the gradient variance of the previous iteration to tune the current gradient so as to stabilize the update direction and escape from poor local optima. Empirical results on the standard ImageNet dataset demonstrate that our method could significantly improve the transferability of gradient-based adversarial attacks. Besides, our method could be used to attack ensemble models or be integrated with various input transformations. Incorporating variance tuning with input transformations on iterative gradient-based attacks in the multi-model setting, the integrated method could achieve an average success rate of 90.1% against nine advanced defense methods, improving the current best attack performance significantly by 85.1% . Code is available at //github.com/JHL-HUST/VT.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.
There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we "deflect'' adversarial attacks by causing the attacker to produce an input that semantically resembles the attack's target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called "adversarial'' because our network classifies them the same way as humans do.
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.