亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is to introduce an asynchronous and local learning framework for neural networks, named Modular Learning Framework (MOLE). This framework modularizes neural networks by layers, defines the training objective via mutual information for each module, and sequentially trains each module by mutual information maximization. MOLE makes the training become local optimization with gradient-isolated across modules, and this scheme is more biologically plausible than BP. We run experiments on vector-, grid- and graph-type data. In particular, this framework is capable of solving both graph- and node-level tasks for graph-type data. Therefore, MOLE has been experimentally proven to be universally applicable to different types of data.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 回合 · Agent · 機器人 · 講稿 ·
2023 年 10 月 3 日

In the realm of autonomous robotics, a critical challenge lies in developing robust solutions for Active Collaborative SLAM, wherein multiple robots must collaboratively explore and map an unknown environment while intelligently coordinating their movements and sensor data acquisitions. To this aim, we present two approaches for coordinating a system consisting of multiple robots to perform Active Collaborative SLAM (AC-SLAM) for environmental exploration. Our two coordination approaches, synchronous and asynchronous implement a methodology to prioritize robot goal assignments by the central server. We also present a method to efficiently spread the robots for maximum exploration while keeping SLAM uncertainty low. Both coordination approaches were evaluated through simulation on publicly available datasets, obtaining promising results.

Clinical Decision Support Systems (CDSS) utilize evidence-based knowledge and patient data to offer real-time recommendations, with Large Language Models (LLMs) emerging as a promising tool to generate plain-text explanations for medical decisions. This study explores the effectiveness and reliability of LLMs in generating explanations for diagnoses based on patient complaints. Three experienced doctors evaluated LLM-generated explanations of the connection between patient complaints and doctor and model-assigned diagnoses across several stages. Experimental results demonstrated that LLM explanations significantly increased doctors' agreement rates with given diagnoses and highlighted potential errors in LLM outputs, ranging from 5% to 30%. The study underscores the potential and challenges of LLMs in healthcare and emphasizes the need for careful integration and evaluation to ensure patient safety and optimal clinical utility.

In this paper we introduce a novel quantifier elimination method for conjunctions of linear real arithmetic constraints. Our algorithm is based on the Fourier-Motzkin variable elimination procedure, but by case splitting we are able to reduce the worst-case complexity from doubly to singly exponential. The adaption of the procedure for SMT solving has strong correspondence to the simplex algorithm, therefore we name it FMplex. Besides the theoretical foundations, we provide an experimental evaluation in the context of SMT solving.

Shape learning, or the ability to leverage shape information, could be a desirable property of convolutional neural networks (CNNs) when target objects have specific shapes. While some research on the topic is emerging, there is no systematic study to conclusively determine whether and under what circumstances CNNs learn shape. Here, we present such a study in the context of segmentation networks where shapes are particularly important. We define shape and propose a new behavioral metric to measure the extent to which a CNN utilizes shape information. We then execute a set of experiments with synthetic and real-world data to progressively uncover under which circumstances CNNs learn shape and what can be done to encourage such behavior. We conclude that (i) CNNs do not learn shape in typical settings but rather rely on other features available to identify the objects of interest, (ii) CNNs can learn shape, but only if the shape is the only feature available to identify the object, (iii) sufficiently large receptive field size relative to the size of target objects is necessary for shape learning; (iv) a limited set of augmentations can encourage shape learning; (v) learning shape is indeed useful in the presence of out-of-distribution data.

Classical machine learning models such as deep neural networks are usually trained by using Stochastic Gradient Descent-based (SGD) algorithms. The classical SGD can be interpreted as a discretization of the stochastic gradient flow. In this paper we propose a novel, robust and accelerated stochastic optimizer that relies on two key elements: (1) an accelerated Nesterov-like Stochastic Differential Equation (SDE) and (2) its semi-implicit Gauss-Seidel type discretization. The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively in the case of the minimization of a quadratic function. This analysis allows us to come up with an optimal learning rate in terms of the convergence rate while ensuring the stability of NAG-GS. This is achieved by the careful analysis of the spectral radius of the iteration matrix and the covariance matrix at stationarity with respect to all hyperparameters of our method. Further, we show that NAG- GS is competitive with state-of-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models such as the logistic regression model, the residual networks models on standard computer vision datasets, Transformers in the frame of the GLUE benchmark and the recent Vision Transformers.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司