亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Statistical power is a measure of the replicability of a categorical hypothesis test. Formally, it is the probability of detecting an effect, if there is a true effect present in the population. Hence, optimizing statistical power as a function of some parameters of a hypothesis test is desirable. However, for most hypothesis tests, the explicit functional form of statistical power for individual model parameters is unknown; but calculating power for a given set of values of those parameters is possible using simulated experiments. These simulated experiments are usually computationally expensive. Hence, developing the entire statistical power manifold using simulations can be very time-consuming. We propose a novel genetic algorithm-based framework for learning statistical power manifolds. For a multiple linear regression $F$-test, we show that the proposed algorithm/framework learns the statistical power manifold much faster as compared to a brute-force approach as the number of queries to the power oracle is significantly reduced. We also show that the quality of learning the manifold improves as the number of iterations increases for the genetic algorithm. Such tools are useful for evaluating statistical power trade-offs when researchers have little information regarding a priori `best guesses' of primary effect sizes of interest or how sampling variability in non-primary effects impacts power for primary ones.

相關內容

In this paper, a joint design of instantaneous channel estimation, beam tracking, and adaptive beamformer construction for a massive multiple-input multiple-output (MIMO) system is proposed. This design focuses on efficiency in terms of performance and computational complexity under the adverse effects of time variation and mobility of sources, the presence of multiuser and multipath components, or simply multi-clusters, and the near-far effect. The design is also suitable for hybrid beamforming and frequency-selective channels. In the proposed system, channel parameters are estimated in time-domain duplex (TDD) uplink mode using a per-cluster approach rather than a joint approach, which significantly reduces the complexity. Per-cluster estimation is possible thanks to the proposed interference-aware statistical beamforming method, namely reduced dimensional Generalized Eigenbeamformer (RD-GEB), which undertakes the computational load of interference mitigation and enables a simpler design for the remaining stages. In addition, the overall design is based on the separation of channel parameters as fast-time and slow-time, leaving only the instantaneous channel estimation and channel matched filtering as fast-time operations, which are handled inside cluster-specific reduced dimensional subspaces. Beam tracking and beamformer construction are held in slow-time rarely, which reduces the time-averaged complexity. Furthermore, beam tracking is performed by leveraging a batch of instantaneous channel estimates, which removes the need for an additional training process. The proposed low-complexity design is shown to outperform the conventional methods.

Visual imitation learning provides an effective framework to learn skills from demonstrations. However, the quality of the provided demonstrations usually significantly affects the ability of an agent to acquire desired skills. Therefore, the standard visual imitation learning assumes near-optimal demonstrations, which are expensive or sometimes prohibitive to collect. Previous works propose to learn from noisy demonstrations; however, the noise is usually assumed to follow a context-independent distribution such as a uniform or gaussian distribution. In this paper, we consider another crucial yet underexplored setting -- imitation learning with task-irrelevant yet locally consistent segments in the demonstrations (e.g., wiping sweat while cutting potatoes in a cooking tutorial). We argue that such noise is common in real world data and term them "extraneous" segments. To tackle this problem, we introduce Extraneousness-Aware Imitation Learning (EIL), a self-supervised approach that learns visuomotor policies from third-person demonstrations with extraneous subsequences. EIL learns action-conditioned observation embeddings in a self-supervised manner and retrieves task-relevant observations across visual demonstrations while excluding the extraneous ones. Experimental results show that EIL outperforms strong baselines and achieves comparable policies to those trained with perfect demonstration on both simulated and real-world robot control tasks. The project page can be found at //sites.google.com/view/eil-website.

Non-asymptotic statistical analysis is often missing for modern geometry-aware machine learning algorithms due to the possibly intricate non-linear manifold structure. This paper studies an intrinsic mean model on the manifold of restricted positive semi-definite matrices and provides a non-asymptotic statistical analysis of the Karcher mean. We also consider a general extrinsic signal-plus-noise model, under which a deterministic error bound of the Karcher mean is provided. As an application, we show that the distributed principal component analysis algorithm, LRC-dPCA, achieves the same performance as the full sample PCA algorithm. Numerical experiments lend strong support to our theories.

Online optimization has gained increasing interest due to its capability of tracking real-world streaming data. Although online optimization methods have been widely studied in the setting of frequentist statistics, few works have considered online optimization with the Bayesian sampling problem. In this paper, we study an Online Particle-based Variational Inference (OPVI) algorithm that uses a set of particles to represent the approximating distribution. To reduce the gradient error caused by the use of stochastic approximation, we include a sublinear increasing batch-size method to reduce the variance. To track the performance of the OPVI algorithm with respect to a sequence of dynamically changing target posterior, we provide a detailed theoretical analysis from the perspective of Wasserstein gradient flow with a dynamic regret. Synthetic and Bayesian Neural Network experiments show that the proposed algorithm achieves better results than naively applying existing Bayesian sampling methods in the online setting.

Based on the weight-sharing mechanism, one-shot NAS methods train a supernet and then inherit the pre-trained weights to evaluate sub-models, largely reducing the search cost. However, several works have pointed out that the shared weights suffer from different gradient descent directions during training. And we further find that large gradient variance occurs during supernet training, which degrades the supernet ranking consistency. To mitigate this issue, we propose to explicitly minimize the gradient variance of the supernet training by jointly optimizing the sampling distributions of PAth and DAta (PA&DA). We theoretically derive the relationship between the gradient variance and the sampling distributions, and reveal that the optimal sampling probability is proportional to the normalized gradient norm of path and training data. Hence, we use the normalized gradient norm as the importance indicator for path and training data, and adopt an importance sampling strategy for the supernet training. Our method only requires negligible computation cost for optimizing the sampling distributions of path and data, but achieves lower gradient variance during supernet training and better generalization performance for the supernet, resulting in a more consistent NAS. We conduct comprehensive comparisons with other improved approaches in various search spaces. Results show that our method surpasses others with more reliable ranking performance and higher accuracy of searched architectures, showing the effectiveness of our method. Code is available at //github.com/ShunLu91/PA-DA.

Computation of a tensor singular value decomposition (t-SVD) with a few passes over the underlying data tensor is crucial in using modern computer architectures, where the main concern is communication cost. The current subspace randomized algorithms for computation of the t-SVD, need 2q + 2 passes over the data tensor where q is a non-negative integer number (power iteration parameter). In this paper, we propose an efficient and flexible randomized algorithm that works for any number of passes q, not necessarily being an even number. The flexibility of the proposed algorithm in using fewer passes naturally leads to lower computational and communication costs. This benefit makes it applicable especially when the data tensors are large or multiple tensor decompositions are required in our task. The proposed algorithm is a generalization of the methods developed for matrices to tensors. The expected/average error bound of the proposed algorithm is derived. Several numerical experiments on random and real-time datasets are conducted and the proposed algorithm is compared with some baseline algorithms. The results confirmed that the proposed algorithm is efficient, applicable, and can provide better performance than the existing algorithms. We also use our proposed method to develop a fast algorithm for the tensor completion problem.

Cross-domain recommendation has attracted increasing attention from industry and academia recently. However, most existing methods do not exploit the interest invariance between domains, which would yield sub-optimal solutions. In this paper, we propose a cross-domain recommendation method: Self-supervised Interest Transfer Network (SITN), which can effectively transfer invariant knowledge between domains via prototypical contrastive learning. Specifically, we perform two levels of cross-domain contrastive learning: 1) instance-to-instance contrastive learning, 2) instance-to-cluster contrastive learning. Not only that, we also take into account users' multi-granularity and multi-view interests. With this paradigm, SITN can explicitly learn the invariant knowledge of interest clusters between domains and accurately capture users' intents and preferences. We conducted extensive experiments on a public dataset and a large-scale industrial dataset collected from one of the world's leading e-commerce corporations. The experimental results indicate that SITN achieves significant improvements over state-of-the-art recommendation methods. Additionally, SITN has been deployed on a micro-video recommendation platform, and the online A/B testing results further demonstrate its practical value. Supplement is available at: //github.com/fanqieCoffee/SITN-Supplement.

Sparse graph recovery methods works well where the data follows their assumptions but often they are not designed for doing downstream probabilistic queries. This limits their adoption to only identifying connections among the input variables. On the other hand, the Probabilistic Graphical Models (PGMs) assumes an underlying base graph between variables and learns a distribution over them. PGM design choices are carefully made such that the inference & sampling algorithms are efficient. This brings in certain restrictions and often simplifying assumptions. In this work, we propose Neural Graph Revealers (NGRs), that are an attempt to efficiently merge the sparse graph recovery methods with PGMs into a single flow. The problem setting consists of an input data X with D features and M samples and the task is to recover a sparse graph showing connection between the features. NGRs view the neural networks as a `white box' or more specifically as a multitask learning framework. We introduce `Graph-constrained path norm' that NGRs leverage to learn a graphical model that captures complex non-linear functional dependencies between the features in the form of an undirected sparse graph. Furthermore, NGRs can handle multimodal inputs like images, text, categorical data, embeddings etc. which is not straightforward to incorporate in the existing methods. We show experimental results of doing sparse graph recovery and probabilistic inference on data from Gaussian graphical models and a multimodal infant mortality dataset by CDC.

Polynomial filters, a kind of Graph Neural Networks, typically use a predetermined polynomial basis and learn the coefficients from the training data. It has been observed that the effectiveness of the model is highly dependent on the property of the polynomial basis. Consequently, two natural and fundamental questions arise: Can we learn a suitable polynomial basis from the training data? Can we determine the optimal polynomial basis for a given graph and node features? In this paper, we propose two spectral GNN models that provide positive answers to the questions posed above. First, inspired by Favard's Theorem, we propose the FavardGNN model, which learns a polynomial basis from the space of all possible orthonormal bases. Second, we examine the supposedly unsolvable definition of optimal polynomial basis from Wang & Zhang (2022) and propose a simple model, OptBasisGNN, which computes the optimal basis for a given graph structure and graph signal. Extensive experiments are conducted to demonstrate the effectiveness of our proposed models.

Learning causal relationships from empirical observations is a central task in scientific research. A common method is to employ structural causal models that postulate noisy functional relations among a set of interacting variables. To ensure unique identifiability of causal directions, researchers consider restricted subclasses of structural causal models. Post-nonlinear (PNL) causal models constitute one of the most flexible options for such restricted subclasses, containing in particular the popular additive noise models as a further subclass. However, learning PNL models is not well studied beyond the bivariate case. The existing methods learn non-linear functional relations by minimizing residual dependencies and subsequently test independence from residuals to determine causal orientations. However, these methods can be prone to overfitting and, thus, difficult to tune appropriately in practice. As an alternative, we propose a new approach for PNL causal discovery that uses rank-based methods to estimate the functional parameters. This new approach exploits natural invariances of PNL models and disentangles the estimation of the non-linear functions from the independence tests used to find causal orientations. We prove consistency of our method and validate our results in numerical experiments.

北京阿比特科技有限公司