亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that Gottesman's semantics (GROUP22, 1998) for Clifford circuits based on the Heisenberg representation can be treated as a type system that can efficiently characterize a common subset of quantum programs. Our applications include (i) certifying whether auxiliary qubits can be safely disposed of, (ii) determining if a system is separable across a given bi-partition, (iii) checking the transversality of a gate with respect to a given stabilizer code, and (iv) typing post-measurement states for computational basis measurements. Further, this type system is extended to accommodate universal quantum computing by deriving types for the $T$-gate, multiply-controlled unitaries such as the Toffoli gate, and some gate injection circuits that use associated magic states. These types allow us to prove a lower bound on the number of $T$ gates necessary to perform a multiply-controlled $Z$ gate.

相關內容

We consider the task of communicating a generic bivariate function of two classical sources over a Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state. Inspired by the techniques developed for the analogous classical setting, and employing the technique of simultaneous (joint) decoding developed for the classical-quantum setting, we propose and analyze a coding scheme based on a fusion of algebraic structured and unstructured codes. This coding scheme allows exploiting both the symmetric structure common amongst the sources and the asymmetries. We derive a new set of sufficient conditions that strictly enlarges the largest known set of sources (capable of communicating the bivariate function) for any given CQ-MAC. We provide these conditions in terms of single-letter quantum information-theoretic quantities.

It is known that each word of length $n$ contains at most $n+1$ distinct palindromes. A finite rich word is a word with maximal number of palindromic factors. The definition of palindromic richness can be naturally extended to infinite words. Sturmian words and Rote complementary symmetric sequences form two classes of binary rich words, while episturmian words and words coding symmetric $d$-interval exchange transformations give us other examples on larger alphabets. In this paper we look for morphisms of the free monoid, which allow us to construct new rich words from already known rich words. We focus on morphisms in Class $P_{ret}$. This class contains morphisms injective on the alphabet and satisfying a particular palindromicity property: for every morphism $\varphi$ in the class there exists a palindrome $w$ such that $\varphi(a)w$ is a first complete return word to $w$ for each letter $a$. We characterize $P_{ret}$ morphisms which preserve richness over a binary alphabet. We also study marked $P_{ret}$ morphisms acting on alphabets with more letters. In particular we show that every Arnoux-Rauzy morphism is conjugated to a morphism in Class $P_{ret}$ and that it preserves richness.

Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of computationally challenging tasks more efficiently than their classical counterparts. The architecture of software-intensive systems can empower architects who can leverage architecture-centric processes, practices, description languages, etc., to model, develop, and evolve quantum computing software (quantum software for short) at higher abstraction levels. We conducted a systematic literature review (SLR) to investigate (i) architectural process, (ii) modeling notations, (iii) architecture design patterns, (iv) tool support, and (iv) challenging factors for quantum software architecture. Results of the SLR indicate that quantum software represents a new genre of software-intensive systems; however, existing processes and notations can be tailored to derive the architecting activities and develop modeling languages for quantum software. Quantum bits (Qubits) mapped to Quantum gates (Qugates) can be represented as architectural components and connectors that implement quantum software. Tool-chains can incorporate reusable knowledge and human roles (e.g., quantum domain engineers, quantum code developers) to automate and customize the architectural process. Results of this SLR can facilitate researchers and practitioners to develop new hypotheses to be tested, derive reference architectures, and leverage architecture-centric principles and practices to engineer emerging and next generations of quantum software.

In this paper, we initiate the study of isogeometric analysis (IGA) of a quantum three-body problem that has been well-known to be difficult to solve. In the IGA setting, we represent the wavefunctions by linear combinations of B-spline basis functions and solve the problem as a matrix eigenvalue problem. The eigenvalue gives the eigenstate energy while the eigenvector gives the coefficients of the B-splines that lead to the eigenstate. The major difficulty of isogeometric or other finite-element-method-based analyses lies in the lack of boundary conditions and a large number of degrees of freedom for accuracy. For a typical many-body problem with attractive interaction, there are bound and scattering states where bound states have negative eigenvalues. We focus on bound states and start with the analysis for a two-body problem. We demonstrate through various numerical experiments that IGA provides a promising technique to solve the three-body problems.

Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, 2D random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.

In sequential functional languages, sized types enable termination checking of programs with complex patterns of recursion in the presence of mixed inductive-coinductive types. In this paper, we adapt sized types and their metatheory to the concurrent setting. We extend the semi-axiomatic sequent calculus, a subsuming paradigm for futures-based functional concurrency, and its underlying operational semantics with recursion and arithmetic refinements. The latter enables a new and highly general sized type scheme we call sized type refinements. As a widely applicable technical device, we type recursive programs with infinitely deep typing derivations that unfold all recursive calls. Then, we observe that certain such derivations can be made infinitely wide but finitely deep. The resulting trees serve as the induction target of our strong normalization result, which we develop via a novel logical relations argument.

We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with the $p$-faces of the $n$-cube (for $n>p$) and stabilizer constraints with faces of dimension $(p\pm1)$. The quantum code obtained by identifying antipodal faces of the resulting complex encodes one logical qubit into $N = 2^{n-p-1} \tbinom{n}{p}$ physical qubits and displays local testability with a soundness of $\Omega(1/\log(N))$ beating the current state-of-the-art of $1/\log^{2}(N)$ due to Hastings. We exploit this local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less than the minimum distance, up to polylog factors. We then extend this code family by considering the quotient of the $n$-cube by arbitrary linear classical codes of length $n$. We establish the parameters of these generalized hemicubic codes. Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the ordinary $n$-cube, then the generalized hemicubic codes could yield quantum locally testable codes of length not exceeding an exponential or even polynomial function of the code dimension.

We study the problem of selling information to a data-buyer who faces a decision problem under uncertainty. We consider the classic Bayesian decision-theoretic model pioneered by [Blackwell, 1951, 1953]. Initially, the data buyer has only partial information about the payoff-relevant state of the world. A data seller offers additional information about the state of the world. The information is revealed through signaling schemes, also referred to as experiments. In the single-agent setting, any mechanism can be represented as a menu of experiments. [Bergemann et al., 2018] present a complete characterization of the revenue-optimal mechanism in a binary state and binary action environment. By contrast, no characterization is known for the case with more actions. In this paper, we consider more general environments and study arguably the simplest mechanism, which only sells the fully informative experiment. In the environment with binary state and $m\geq 3$ actions, we provide an $O(m)$-approximation to the optimal revenue by selling only the fully informative experiment and show that the approximation ratio is tight up to an absolute constant factor. An important corollary of our lower bound is that the size of the optimal menu must grow at least linearly in the number of available actions, so no universal upper bound exists for the size of the optimal menu in the general single-dimensional setting. For multi-dimensional environments, we prove that even in arguably the simplest matching utility environment with 3 states and 3 actions, the ratio between the optimal revenue and the revenue by selling only the fully informative experiment can grow immediately to a polynomial of the number of agent types. Nonetheless, if the distribution is uniform, we show that selling only the fully informative experiment is indeed the optimal mechanism.

Understanding quantum channels and the strange behavior of their capacities is a key objective of quantum information theory. Here we study a remarkably simple, low-dimensional, single-parameter family of quantum channels with exotic quantum information-theoretic features. As the simplest example from this family, we focus on a qutrit-to-qutrit channel that is intuitively obtained by hybridizing together a simple degradable channel and a completely useless qubit channel. Such hybridizing makes this channel's capacities behave in a variety of interesting ways. For instance, the private and classical capacity of this channel coincide and can be explicitly calculated, even though the channel does not belong to any class for which the underlying information quantities are known to be additive. Moreover, the quantum capacity of the channel can be computed explicitly, given a clear and compelling conjecture is true. This "spin alignment conjecture", which may be of independent interest, is proved in certain special cases and additional numerical evidence for its validity is provided. Finally, we generalize the qutrit channel in two ways, and the resulting channels and their capacities display similarly rich behavior. In a companion paper, we further show that the qutrit channel demonstrates superadditivity when transmitting quantum information jointly with a variety of assisting channels, in a manner unknown before.

We present a classical algorithm that, for any $D$-dimensional geometrically-local, quantum circuit $C$ of polylogarithmic-depth, and any bit string $x \in {0,1}^n$, can compute the quantity $|<x|C|0^{\otimes n}>|^2$ to within any inverse-polynomial additive error in quasi-polynomial time, for any fixed dimension $D$. This is an extension of the result [CC21], which originally proved this result for $D = 3$. To see why this is interesting, note that, while the $D = 1$ case of this result follows from standard use of Matrix Product States, known for decades, the $D = 2$ case required novel and interesting techniques introduced in [BGM19]. Extending to the case $D = 3$ was even more laborious and required further new techniques introduced in [CC21]. Our work here shows that, while handling each new dimension has historically required a new insight, and fixed algorithmic primitive, based on known techniques for $D \leq 3$, we can now handle any fixed dimension $D > 3$. Our algorithm uses the Divide-and-Conquer framework of [CC21] to approximate the desired quantity via several instantiations of the same problem type, each involving $D$-dimensional circuits on about half the number of qubits as the original. This division step is then applied recursively, until the width of the recursively decomposed circuits in the $D^{th}$ dimension is so small that they can effectively be regarded as $(D-1)$-dimensional problems by absorbing the small width in the $D^{th}$ dimension into the qudit structure at the cost of a moderate increase in runtime. The main technical challenge lies in ensuring that the more involved portions of the recursive circuit decomposition and error analysis from [CC21] still hold in higher dimensions, which requires small modifications to the analysis in some places.

北京阿比特科技有限公司