Raga is a fundamental melodic concept in Indian Art Music (IAM). It is characterized by complex patterns. All performances and compositions are based on the raga framework. Raga and tonic detection have been a long-standing research problem in the field of Music Information Retrieval. In this paper, we attempt to detect the raga using a novel feature to extract sequential or temporal information from an audio sample. We call these Sequential Pitch Distributions (SPD), which are distributions taken over pitch values between two given pitch values over time. We also achieve state-of-the-art results on both Hindustani and Carnatic music raga data sets with an accuracy of 99% and 88.13%, respectively. SPD gives a great boost in accuracy over a standard pitch distribution. The main goal of this paper, however, is to present an alternative approach to modeling the temporal aspects of the melody and thereby deducing the raga.
One of the fundamental challenges for offline reinforcement learning (RL) is ensuring robustness to data distribution. Whether the data originates from a near-optimal policy or not, we anticipate that an algorithm should demonstrate its ability to learn an effective control policy that seamlessly aligns with the inherent distribution of offline data. Unfortunately, behavior regularization, a simple yet effective offline RL algorithm, tends to struggle in this regard. In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration. Our key observation is that by iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement, while also implicitly avoiding querying out-of-sample actions to prevent catastrophic learning failures. We prove that in the tabular setting this algorithm is capable of learning the optimal policy covered by the offline dataset, commonly referred to as the in-sample optimal policy. We then explore several implementation details of the algorithm when function approximations are applied. The resulting algorithm is easy to implement, requiring only a few lines of code modification to existing methods. Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks, clearly demonstrate its superiority over behavior regularization.
Transformer is a state-of-the-art model in the field of natural language processing (NLP). Current NLP models primarily increase the number of transformers to improve processing performance. However, this technique requires a lot of training resources such as computing capacity. In this paper, a novel structure of Transformer is proposed. It is featured by full layer normalization, weighted residual connection, positional encoding exploiting reinforcement learning, and zero masked self-attention. The proposed Transformer model, which is called Enhanced Transformer, is validated by the bilingual evaluation understudy (BLEU) score obtained with the Multi30k translation dataset. As a result, the Enhanced Transformer achieves 202.96% higher BLEU score as compared to the original transformer with the translation dataset.
Diffusion models (DMs) have demonstrated advantageous potential on generative tasks. Widespread interest exists in incorporating DMs into downstream applications, such as producing or editing photorealistic images. However, practical deployment and unprecedented power of DMs raise legal issues, including copyright protection and monitoring of generated content. In this regard, watermarking has been a proven solution for copyright protection and content monitoring, but it is underexplored in the DMs literature. Specifically, DMs generate samples from longer tracks and may have newly designed multimodal structures, necessitating the modification of conventional watermarking pipelines. To this end, we conduct comprehensive analyses and derive a recipe for efficiently watermarking state-of-the-art DMs (e.g., Stable Diffusion), via training from scratch or finetuning. Our recipe is straightforward but involves empirically ablated implementation details, providing a foundation for future research on watermarking DMs. The code is available at //github.com/yunqing-me/WatermarkDM.
With the emergence of more powerful large language models (LLMs), such as ChatGPT and GPT-4, in-context learning (ICL) has gained significant prominence in leveraging these models for specific tasks by utilizing data-label pairs as precondition prompts. While incorporating demonstrations can greatly enhance the performance of LLMs across various tasks, it may introduce a new security concern: attackers can manipulate only the demonstrations without changing the input to perform an attack. In this paper, we investigate the security concern of ICL from an adversarial perspective, focusing on the impact of demonstrations. We propose a novel attack method named advICL, which aims to manipulate only the demonstration without changing the input to mislead the models. Our results demonstrate that as the number of demonstrations increases, the robustness of in-context learning would decrease. Additionally, we also identify the intrinsic property of the demonstrations is that they can be used (prepended) with different inputs. As a result, it introduces a more practical threat model in which an attacker can attack the test input example even without knowing and manipulating it. To achieve it, we propose the transferable version of advICL, named Transferable-advICL. Our experiment shows that the adversarial demonstration generated by Transferable-advICL can successfully attack the unseen test input examples. We hope that our study reveals the critical security risks associated with ICL and underscores the need for extensive research on the robustness of ICL, particularly given its increasing significance in the advancement of LLMs.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (e.g., convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.