We study the truck-drone cooperative delivery problem in a setting where a single truck carrying a drone travels at constant speed on a straight-line trajectory/street. Delivery to clients located in the plane and not on the truck's trajectory is performed by the drone, which has limited carrying capacity and flying range, and whose battery can be recharged when on the truck. We show that the problem of maximizing the number of deliveries is strongly NP-hard even in this simple setting. We present a 2-approximation algorithm for the problem, and an optimal algorithm for a non-trivial family of instances.
Planning a public transit network is a challenging optimization problem, but essential in order to realize the benefits of autonomous buses. We propose a novel algorithm for planning networks of routes for autonomous buses. We first train a graph neural net model as a policy for constructing route networks, and then use the policy as one of several mutation operators in a evolutionary algorithm. We evaluate this algorithm on a standard set of benchmarks for transit network design, and find that it outperforms the learned policy alone by up to 20% and a plain evolutionary algorithm approach by up to 53% on realistic benchmark instances.
We propose a new approach for modeling and reconciling conflicting data cleaning actions. Such conflicts arise naturally in collaborative data curation settings where multiple experts work independently and then aim to put their efforts together to improve and accelerate data cleaning. The key idea of our approach is to model conflicting updates as a formal \emph{argumentation framework}(AF). Such argumentation frameworks can be automatically analyzed and solved by translating them to a logic program $P_{AF}$ whose declarative semantics yield a transparent solution with many desirable properties, e.g., uncontroversial updates are accepted, unjustified ones are rejected, and the remaining ambiguities are exposed and presented to users for further analysis. After motivating the problem, we introduce our approach and illustrate it with a detailed running example introducing both well-founded and stable semantics to help understand the AF solutions. We have begun to develop open source tools and Jupyter notebooks that demonstrate the practicality of our approach. In future work we plan to develop a toolkit for conflict resolution that can be used in conjunction with OpenRefine, a popular interactive data cleaning tool.
The sequence reconstruction problem, introduced by Levenshtein in 2001, considers a scenario where the sender transmits a codeword from some codebook, and the receiver obtains $N$ noisy outputs of the codeword. We study the problem of efficient reconstruction using $N$ outputs that are each corrupted by at most $t$ substitutions. Specifically, for the ubiquitous Reed-Solomon codes, we adapt the Koetter-Vardy soft-decoding algorithm, presenting a reconstruction algorithm capable of correcting beyond Johnson radius. Furthermore, the algorithm uses $\mathcal{O}(nN)$ field operations, where $n$ is the codeword length.
While the study of language as typed on smartphones offers valuable insights, existing data collection methods often fall short in providing contextual information and ensuring user privacy. We present a privacy-respectful approach - context-enriched keyboard logging - that allows for the extraction of contextual information on the user's input motive, which is meaningful for linguistics, psychology, and behavioral sciences. In particular, with our approach, we enable distinguishing language contents by their channel (i.e., comments, messaging, search inputs). Filtering by channel allows for better pre-selection of data, which is in the interest of researchers and improves users' privacy. We demonstrate our approach on a large-scale six-month user study (N=624) of language use in smartphone interactions in the wild. Finally, we highlight the implications for research on language use in human-computer interaction and interdisciplinary contexts.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.