Detecting abrupt changes in the community structure of a network from noisy observations is a fundamental problem in statistics and machine learning. This paper presents an online change detection algorithm called Spectral-CUSUM to detect unknown network structure changes through a generalized likelihood ratio statistic. We characterize the average run length (ARL) and the expected detection delay (EDD) of the Spectral-CUSUM procedure and prove its asymptotic optimality. Finally, we demonstrate the good performance of the Spectral-CUSUM procedure and compare it with several baseline methods using simulations and real data examples on seismic event detection using sensor network data.
Visual localization is a fundamental task for a wide range of applications in the field of robotics. Yet, it is still a complex problem with no universal solution, and the existing approaches are difficult to scale: most state-of-the-art solutions are unable to provide accurate localization without a significant amount of storage space. We propose a hierarchical, low-memory approach to localization based on keypoints with different descriptor lengths. It becomes possible with the use of the developed unsupervised neural network, which predicts a feature pyramid with different descriptor lengths for images. This structure allows applying coarse-to-fine paradigms for localization based on keypoint map, and varying the accuracy of localization by changing the type of the descriptors used in the pipeline. Our approach achieves comparable results in localization accuracy and a significant reduction in memory consumption (up to 16 times) among state-of-the-art methods.
This work investigates conditions for quantitative image reconstruction in multispectral computed tomography (MSCT), which remains a topic of active research. In MSCT, one seeks to obtain from data the spatial distribution of linear attenuation coefficient, referred to as a virtual monochromatic image (VMI), at a given X-ray energy, within the subject imaged. As a VMI is decomposed often into a linear combination of basis images with known decomposition coefficients, the reconstruction of a VMI is thus tantamount to that of the basis images. An empirical, but highly effective, two-step data-domain-decomposition (DDD) method has been developed and used widely for quantitative image reconstruction in MSCT. In the two-step DDD method, step (1) estimates the so-called basis sinogram from data through solving a nonlinear transform, whereas step (2) reconstructs basis images from their basis sinograms estimated. Subsequently, a VMI can readily be obtained from the linear combination of basis images reconstructed. As step (2) involves the inversion of a straightforward linear system, step (1) is the key component of the DDD method in which a nonlinear system needs to be inverted for estimating the basis sinograms from data. In this work, we consider a {\it discrete} form of the nonlinear system in step (1), and then carry out theoretical and numerical analyses of conditions on the existence, uniqueness, and stability of a solution to the discrete nonlinear system for accurately estimating the discrete basis sinograms, leading to quantitative reconstruction of VMIs in MSCT.
In this paper, we focus on the solution of online optimization problems that arise often in signal processing and machine learning, in which we have access to streaming sources of data. We discuss algorithms for online optimization based on the prediction-correction paradigm, both in the primal and dual space. In particular, we leverage the typical regularized least-squares structure appearing in many signal processing problems to propose a novel and tailored prediction strategy, which we call extrapolation-based. By using tools from operator theory, we then analyze the convergence of the proposed methods as applied both to primal and dual problems, deriving an explicit bound for the tracking error, that is, the distance from the time-varying optimal solution. We further discuss the empirical performance of the algorithm when applied to signal processing, machine learning, and robotics problems.
In this work we propose a low rank approximation of high fidelity finite element simulations by utilizing weights corresponding to areas of high stress levels for an abdominal aortic aneurysm, i.e. a deformed blood vessel. We focus on the van Mises stress, which corresponds to the rupture risk of the aorta. This is modeled as a Gaussian Markov random field and we define our approximation as a basis of vectors that solve a series of optimization problems. Each of these problems describes the minimization of an expected weighted quadratic loss. The weights, which encapsulate the importance of each grid point of the finite elements, can be chosen freely - either data driven or by incorporating domain knowledge. Along with a more general discussion of mathematical properties we provide an effective numerical heuristic to compute the basis under general conditions. We explicitly explore two such bases on the surface of a high fidelity finite element grid and show their efficiency for compression. We further utilize the approach to predict the van Mises stress in areas of interest using low and high fidelity simulations. Due to the high dimension of the data we have to take extra care to keep the problem numerically feasible. This is also a major concern of this work.
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.