An interesting problem in many video-based applications is the generation of short synopses by selecting the most informative frames, a procedure which is known as video summarization. For sign language videos the benefits of using the $t$-parameterized counterpart of the curvature of the 2-D signer's wrist trajectory to identify keyframes, have been recently reported in the literature. In this paper we extend these ideas by modeling the 3-D hand motion that is extracted from each frame of the video. To this end we propose a new informative function based on the $t$-parameterized curvature and torsion of the 3-D trajectory. The method to characterize video frames as keyframes depends on whether the motion occurs in 2-D or 3-D space. Specifically, in the case of 3-D motion we look for the maxima of the harmonic mean of the curvature and torsion of the target's trajectory; in the planar motion case we seek for the maxima of the trajectory's curvature. The proposed 3-D feature is experimentally evaluated in applications of sign language videos on (1) objective measures using ground-truth keyframe annotations, (2) human-based evaluation of understanding, and (3) gloss classification and the results obtained are promising.
In the rapidly evolving landscape of deep learning, the quest for models that balance expressivity with computational efficiency has never been more critical. This paper introduces Orchid, a novel architecture that reimagines sequence modeling by incorporating a new data-dependent convolution mechanism. Orchid is designed to address the inherent limitations of traditional attention mechanisms, particularly their quadratic complexity, without compromising the ability to capture long-range dependencies and in-context learning. At the core of Orchid lies the data-dependent convolution layer, which dynamically adjusts its kernel conditioned on input data using a dedicated conditioning neural network. We design two simple conditioning networks that maintain shift equivariance in the adaptive convolution operation. The dynamic nature of data-dependent convolution kernel, coupled with gating operations, grants Orchid high expressivity while maintaining efficiency and quasilinear scalability for long sequences. We rigorously evaluate Orchid across multiple domains, including language modeling and image classification, to showcase its performance and generality. Our experiments demonstrate that Orchid architecture not only outperforms traditional attention-based architectures such as BERT and Vision Transformers with smaller model sizes, but also extends the feasible sequence length beyond the limitations of the dense attention layers. This achievement represents a significant step towards more efficient and scalable deep learning models for sequence modeling.
With the growing demand for immersive digital applications, the need to understand and reconstruct 3D scenes has significantly increased. In this context, inpainting indoor environments from a single image plays a crucial role in modeling the internal structure of interior spaces as it enables the creation of textured and clutter-free reconstructions. While recent methods have shown significant progress in room modeling, they rely on constraining layout estimators to guide the reconstruction process. These methods are highly dependent on the performance of the structure estimator and its generative ability in heavily occluded environments. In response to these issues, we propose an innovative approach based on a U-Former architecture and a new Windowed-FourierMixer block, resulting in a unified, single-phase network capable of effectively handle human-made periodic structures such as indoor spaces. This new architecture proves advantageous for tasks involving indoor scenes where symmetry is prevalent, allowing the model to effectively capture features such as horizon/ceiling height lines and cuboid-shaped rooms. Experiments show the proposed approach outperforms current state-of-the-art methods on the Structured3D dataset demonstrating superior performance in both quantitative metrics and qualitative results. Code and models will be made publicly available.
Out-of-distribution detection is a crucial technique for deploying machine learning models in the real world to handle the unseen scenarios.In this paper, we propose a simple but effective Neural Activation Prior (NAP) for out-of-distribution detection (OOD). Our neural activation prior is based on a key observation that, for a channel before the global pooling layer of a fully trained neural network, the probability of a few of its neurons being activated with a larger response by an in-distribution (ID) sample is significantly higher than that by an OOD sample. An intuitive explanation is each channel in a model fully trained on ID dataset would play a role in detecting a certain pattern in the samples within the ID dataset, and a few neurons can be activated with a large response when the pattern is detected in an input sample. Thus, a new scoring function based on this prior is proposed to highlight the role of these strongly activated neurons in OOD detection. This approach is plug-and-play and does not lead to any performance degradation on in-distribution data classification and requires no extra training or statistics from training or external datasets. Notice that previous methods primarily rely on post-global-pooling features of the neural networks, while the within-channel distribution information we leverage would be discarded by the global pooling operator. Consequently, our method is orthogonal to existing approaches and can be effectively combined with them in various applications. Experimental results show that our method achieves the state-of-the-art performance on CIFAR-10, CIFAR-100 and ImageNet datasets, which demonstrates the power of the proposed prior.
Generative models can serve as surrogates for some real data sources by creating synthetic training datasets, but in doing so they may transfer biases to downstream tasks. We focus on protecting quality and diversity when generating synthetic training datasets. We propose quality-diversity generative sampling (QDGS), a framework for sampling data uniformly across a user-defined measure space, despite the data coming from a biased generator. QDGS is a model-agnostic framework that uses prompt guidance to optimize a quality objective across measures of diversity for synthetically generated data, without fine-tuning the generative model. Using balanced synthetic datasets generated by QDGS, we first debias classifiers trained on color-biased shape datasets as a proof-of-concept. By applying QDGS to facial data synthesis, we prompt for desired semantic concepts, such as skin tone and age, to create an intersectional dataset with a combined blend of visual features. Leveraging this balanced data for training classifiers improves fairness while maintaining accuracy on facial recognition benchmarks. Code available at: //github.com/Cylumn/qd-generative-sampling.
Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem. In addition, we discuss generalizability and computational cost of the learned mesh motion operators.
3D scene understanding for robotic applications exhibits a unique set of requirements including real-time inference, object-centric latent representation learning, accurate 6D pose estimation and 3D reconstruction of objects. Current methods for scene understanding typically rely on a combination of trained models paired with either an explicit or learnt volumetric representation, all of which have their own drawbacks and limitations. We introduce DreamUp3D, a novel Object-Centric Generative Model (OCGM) designed explicitly to perform inference on a 3D scene informed only by a single RGB-D image. DreamUp3D is a self-supervised model, trained end-to-end, and is capable of segmenting objects, providing 3D object reconstructions, generating object-centric latent representations and accurate per-object 6D pose estimates. We compare DreamUp3D to baselines including NeRFs, pre-trained CLIP-features, ObSurf, and ObPose, in a range of tasks including 3D scene reconstruction, object matching and object pose estimation. Our experiments show that our model outperforms all baselines by a significant margin in real-world scenarios displaying its applicability for 3D scene understanding tasks while meeting the strict demands exhibited in robotics applications.
Steering the behavior of a strong model pre-trained on internet-scale data can be difficult due to the scarcity of competent supervisors. Recent studies reveal that, despite supervisory noises, a strong student model may surpass its weak teacher when fine-tuned on specific objectives. Yet, the effectiveness of such weak-to-strong generalization remains limited, especially in the presence of large capability gaps. In this paper, we propose to address this challenge by harnessing a diverse set of specialized teachers, instead of a single generalist one, that collectively supervises the strong student. Our approach resembles the classical hierarchical mixture of experts, with two components tailored for co-supervision: (i) we progressively alternate student training and teacher assignment, leveraging the growth of the strong student to identify plausible supervisions; (ii) we conservatively enforce teacher-student and local-global consistency, leveraging their dependencies to reject potential annotation noises. We validate the proposed method through visual recognition tasks on the OpenAI weak-to-strong benchmark and additional multi-domain datasets. Our code is available at \url{//github.com/yuejiangliu/csl}.
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts (a.k.a. personalized T2I), we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in target images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome. The data, code, and interactive demo is available at: //conceptbed.github.io/
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.