Large Language Models (LLMs) demonstrate impressive performance in various downstream tasks. However, they may still generate incorrect responses in certain scenarios due to the knowledge deficiencies and the flawed pre-training data. Continual Learning (CL) is a commonly used method to address this issue. Traditional CL is task-oriented, using novel or factually accurate data to retrain LLMs from scratch. However, this method requires more task-related training data and incurs expensive training costs. To address this challenge, we propose the Continue Evolving from Mistakes (CEM) method, inspired by the 'summarize mistakes' learning skill, to achieve iterative refinement of LLMs. Specifically, the incorrect responses of LLMs indicate knowledge deficiencies related to the questions. Therefore, we collect corpora with these knowledge from multiple data sources and follow it up with iterative supplementary training for continuous, targeted knowledge updating and supplementation. Meanwhile, we developed two strategies to construct supplementary training sets to enhance the LLM's understanding of the corpus and prevent catastrophic forgetting. We conducted extensive experiments to validate the effectiveness of this CL method. In the best case, our method resulted in a 17.00\% improvement in the accuracy of the LLM.
Graph neural networks (GNNs) have emerged as powerful tools for processing relational data in applications. However, GNNs suffer from the problem of oversmoothing, the property that the features of all nodes exponentially converge to the same vector over layers, prohibiting the design of deep GNNs. In this work we study oversmoothing in graph convolutional networks (GCNs) by using their Gaussian process (GP) equivalence in the limit of infinitely many hidden features. By generalizing methods from conventional deep neural networks (DNNs), we can describe the distribution of features at the output layer of deep GCNs in terms of a GP: as expected, we find that typical parameter choices from the literature lead to oversmoothing. The theory, however, allows us to identify a new, nonoversmoothing phase: if the initial weights of the network have sufficiently large variance, GCNs do not oversmooth, and node features remain informative even at large depth. We demonstrate the validity of this prediction in finite-size GCNs by training a linear classifier on their output. Moreover, using the linearization of the GCN GP, we generalize the concept of propagation depth of information from DNNs to GCNs. This propagation depth diverges at the transition between the oversmoothing and non-oversmoothing phase. We test the predictions of our approach and find good agreement with finite-size GCNs. Initializing GCNs near the transition to the non-oversmoothing phase, we obtain networks which are both deep and expressive.
Federated Learning (FL) systems evolve in heterogeneous and ever-evolving environments that challenge their performance. Under real deployments, the learning tasks of clients can also evolve with time, which calls for the integration of methodologies such as Continual Learning. To enable research reproducibility, we propose a set of experimental best practices that precisely capture and emulate complex learning scenarios. Our framework, Freddie, is the first entirely configurable framework for Federated Continual Learning (FCL), and it can be seamlessly deployed on a large number of machines thanks to the use of Kubernetes and containerization. We demonstrate the effectiveness of Freddie on two use cases, (i) large-scale FL on CIFAR100 and (ii) heterogeneous task sequence on FCL, which highlight unaddressed performance challenges in FCL scenarios.
While Language Models (LMs) are the workhorses of NLP, their interplay with structured knowledge graphs (KGs) is still actively researched. Current methods for encoding such graphs typically either (i) linearize them for embedding with LMs -- which underutilize structural information, or (ii) use Graph Neural Networks (GNNs) to preserve the graph structure -- but GNNs cannot represent text features as well as pretrained LMs. In our work we introduce a novel LM type, the Graph Language Model (GLM), that integrates the strengths of both approaches and mitigates their weaknesses. The GLM parameters are initialized from a pretrained LM to enhance understanding of individual graph concepts and triplets. Simultaneously, we design the GLM's architecture to incorporate graph biases, thereby promoting effective knowledge distribution within the graph. This enables GLMs to process graphs, texts, and interleaved inputs of both. Empirical evaluations on relation classification tasks show that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot setting, demonstrating their versatility.
We study a specific type of SCM, called a Dynamic Structural Causal Model (DSCM), whose endogenous variables represent functions of time, which is possibly cyclic and allows for latent confounding. As a motivating use-case, we show that certain systems of Stochastic Differential Equations (SDEs) can be appropriately represented with DSCMs. An immediate consequence of this construction is a graphical Markov property for systems of SDEs. We define a time-splitting operation, allowing us to analyse the concept of local independence (a notion of continuous-time Granger (non-)causality). We also define a subsampling operation, which returns a discrete-time DSCM, and which can be used for mathematical analysis of subsampled time-series. We give suggestions how DSCMs can be used for identification of the causal effect of time-dependent interventions, and how existing constraint-based causal discovery algorithms can be applied to time-series data.
Large Language Models (LLMs) are typically harmless but remain vulnerable to carefully crafted prompts known as ``jailbreaks'', which can bypass protective measures and induce harmful behavior. Recent advancements in LLMs have incorporated moderation guardrails that can filter outputs, which trigger processing errors for certain malicious questions. Existing red-teaming benchmarks often neglect to include questions that trigger moderation guardrails, making it difficult to evaluate jailbreak effectiveness. To address this issue, we introduce JAMBench, a harmful behavior benchmark designed to trigger and evaluate moderation guardrails. JAMBench involves 160 manually crafted instructions covering four major risk categories at multiple severity levels. Furthermore, we propose a jailbreak method, JAM (Jailbreak Against Moderation), designed to attack moderation guardrails using jailbreak prefixes to bypass input-level filters and a fine-tuned shadow model functionally equivalent to the guardrail model to generate cipher characters to bypass output-level filters. Our extensive experiments on four LLMs demonstrate that JAM achieves higher jailbreak success ($\sim$ $\times$ 19.88) and lower filtered-out rates ($\sim$ $\times$ 1/6) than baselines.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan