In the committee voting setting, a subset of $k$ alternatives is selected based on the preferences of voters. In this paper, our goal is to efficiently compute ex-ante fair probability distributions (or lotteries) over committees. Since it is not known whether a lottery satisfying the desirable fairness property of fractional core is polynomial-time computable, we introduce a new axiom called group resource proportionality (GRP), which strengthens other fairness notions in the literature. We characterize our fairness axiom by a correspondence with max flows on a network formulation of committee voting. Using the connection to flow networks revealed by this characterization, we then introduce voting rules which achieve fairness in conjunction with other desirable properties. The redistributive utilitarian rule satisfies ex-ante efficiency in addition to our fairness axiom. We also give a voting rule which maximizes social welfare subject to fairness by reducing to a minimum-cost maximum-flow problem. Lastly, we show our fairness property can be obtained in tandem with strong ex-post fairness properties -- an approach known as best-of-both-worlds fairness. We strengthen existing best-or-both-worlds fairness results in committee voting and resolve an open question posed by Aziz et al. (2023). These findings follow from an auxiliary result which may prove useful in obtaining best-of-both-worlds type results in future research on committee voting.
We consider the problem of learning stable matchings in a fully decentralized and uncoordinated manner. In this problem, there are $n$ men and $n$ women, each having preference over the other side. It is assumed that women know their preferences over men, but men are not aware of their preferences over women, and they only learn them if they propose and successfully get matched to women. A matching is called stable if no man and woman prefer each other over their current matches. When all the preferences are known a priori, the celebrated Deferred-Acceptance algorithm proposed by Gale and Shapley provides a decentralized and uncoordinated algorithm to obtain a stable matching. However, when the preferences are unknown, developing such an algorithm faces major challenges due to a lack of coordination. We achieve this goal by making a connection between stable matchings and learning Nash equilibria (NE) in noncooperative games. First, we provide a complete information game formulation for the stable matching problem with known preferences such that its set of pure NE coincides with the set of stable matchings, while its mixed NE can be rounded in a decentralized manner to a stable matching. Relying on such a game-theoretic formulation, we show that for hierarchical markets, adopting the exponential weight (EXP) learning algorithm for the stable matching game achieves logarithmic regret with polynomial dependence on the number of players, thus answering a question posed in previous literature. Moreover, we show that the same EXP learning algorithm converges locally and exponentially fast to a stable matching in general matching markets. We complement this result by introducing another decentralized and uncoordinated learning algorithm that globally converges to a stable matching with arbitrarily high probability, leveraging the weak acyclicity property of the stable matching game.
This paper presents refined BigEarthNet (reBEN) that is a large-scale, multi-modal remote sensing dataset constructed to support deep learning (DL) studies for remote sensing image analysis. The reBEN dataset consists of 549,488 pairs of Sentinel-1 and Sentinel-2 image patches. To construct reBEN, we initially consider the Sentinel-1 and Sentinel-2 tiles used to construct the BigEarthNet dataset and then divide them into patches of size 1200 m x 1200 m. We apply atmospheric correction to the Sentinel-2 patches using the latest version of the sen2cor tool, resulting in higher-quality patches compared to those present in BigEarthNet. Each patch is then associated with a pixel-level reference map and scene-level multi-labels. This makes reBEN suitable for pixel- and scene-based learning tasks. The labels are derived from the most recent CORINE Land Cover (CLC) map of 2018 by utilizing the 19-class nomenclature as in BigEarthNet. The use of the most recent CLC map results in overcoming the label noise present in BigEarthNet. Furthermore, we introduce a new geographical-based split assignment algorithm that significantly reduces the spatial correlation among the train, validation, and test sets with respect to those present in BigEarthNet. This increases the reliability of the evaluation of DL models. To minimize the DL model training time, we introduce software tools that convert the reBEN dataset into a DL-optimized data format. In our experiments, we show the potential of reBEN for multi-modal multi-label image classification problems by considering several state-of-the-art DL models. The pre-trained model weights, associated code, and complete dataset are available at //bigearth.net.
In this paper, the authors introduce a lightweight dataset to interpret IoT (Internet of Things) activity in preparation to create decoys by replicating known data traffic patterns. The dataset comprises different scenarios in a real network setting. This paper also surveys information related to other IoT datasets along with the characteristics that make our data valuable. Many of the datasets available are synthesized (simulated) or often address industrial applications, while the IoT dataset we present is based on likely smart home scenarios. Further, there are only a limited number of IoT datasets that contain both normal operation and attack scenarios. A discussion of the network configuration and the steps taken to prepare this dataset are presented as we prepare to create replicative patterns for decoy purposes. The dataset, which we refer to as IoT Flex Data, consists of four categories, namely, IoT benign idle, IoT benign active, IoT setup, and malicious (attack) traffic associating the IoT devices with the scenarios under consideration.
Scientific posters are used to present the contributions of scientific papers effectively in a graphical format. However, creating a well-designed poster that efficiently summarizes the core of a paper is both labor-intensive and time-consuming. A system that can automatically generate well-designed posters from scientific papers would reduce the workload of authors and help readers understand the outline of the paper visually. Despite the demand for poster generation systems, only a limited research has been conduced due to the lack of publicly available datasets. Thus, in this study, we built the SciPostLayout dataset, which consists of 7,855 scientific posters and manual layout annotations for layout analysis and generation. SciPostLayout also contains 100 scientific papers paired with the posters. All of the posters and papers in our dataset are under the CC-BY license and are publicly available. As benchmark tests for the collected dataset, we conducted experiments for layout analysis and generation utilizing existing computer vision models and found that both layout analysis and generation of posters using SciPostLayout are more challenging than with scientific papers. We also conducted experiments on generating layouts from scientific papers to demonstrate the potential of utilizing LLM as a scientific poster generation system. The dataset is publicly available at //huggingface.co/datasets/omron-sinicx/scipostlayout_v2. The code is also publicly available at //github.com/omron-sinicx/scipostlayout.
This article addresses the problem of testing the conditional independence of two generic random vectors $X$ and $Y$ given a third random vector $Z$, which plays an important role in statistical and machine learning applications. We propose a new non-parametric testing procedure that avoids explicitly estimating any conditional distributions but instead requires sampling from the two marginal conditional distributions of $X$ given $Z$ and $Y$ given $Z$. We further propose using a generative neural network (GNN) framework to sample from these approximated marginal conditional distributions, which tends to mitigate the curse of dimensionality due to its adaptivity to any low-dimensional structures and smoothness underlying the data. Theoretically, our test statistic is shown to enjoy a doubly robust property against GNN approximation errors, meaning that the test statistic retains all desirable properties of the oracle test statistic utilizing the true marginal conditional distributions, as long as the product of the two approximation errors decays to zero faster than the parametric rate. Asymptotic properties of our statistic and the consistency of a bootstrap procedure are derived under both null and local alternatives. Extensive numerical experiments and real data analysis illustrate the effectiveness and broad applicability of our proposed test.
Planning for a wide range of real-world tasks necessitates to know and write all constraints. However, instances exist where these constraints are either unknown or challenging to specify accurately. A possible solution is to infer the unknown constraints from expert demonstration. The majority of prior works limit themselves to learning simple linear constraints, or require strong knowledge of the true constraint parameterization or environmental model. To mitigate these problems, this paper presents a positive-unlabeled (PU) learning approach to infer a continuous, arbitrary and possibly nonlinear, constraint from demonstration. From a PU learning view, We treat all data in demonstrations as positive (feasible) data, and learn a (sub)-optimal policy to generate high-reward-winning but potentially infeasible trajectories, which serve as unlabeled data containing both feasible and infeasible states. Under an assumption on data distribution, a feasible-infeasible classifier (i.e., constraint model) is learned from the two datasets through a postprocessing PU learning technique. The entire method employs an iterative framework alternating between updating the policy, which generates and selects higher-reward policies, and updating the constraint model. Additionally, a memory buffer is introduced to record and reuse samples from previous iterations to prevent forgetting. The effectiveness of the proposed method is validated in two Mujoco environments, successfully inferring continuous nonlinear constraints and outperforming a baseline method in terms of constraint accuracy and policy safety.
Speech Emotion Recognition (SER) has been traditionally formulated as a classification task. However, emotions are generally a spectrum whose distribution varies from situation to situation leading to poor Out-of-Domain (OOD) performance. We take inspiration from statistical formulation of Automatic Speech Recognition (ASR) and formulate the SER task as generating the most likely sequence of text tokens to infer emotion. The formulation breaks SER into predicting acoustic model features weighted by language model prediction. As an instance of this approach, we present SELM, an audio-conditioned language model for SER that predicts different emotion views. We train SELM on curated speech emotion corpus and test it on three OOD datasets (RAVDESS, CREMAD, IEMOCAP) not used in training. SELM achieves significant improvements over the state-of-the-art baselines, with 17% and 7% relative accuracy gains for RAVDESS and CREMA-D, respectively. Moreover, SELM can further boost its performance by Few-Shot Learning using a few annotated examples. The results highlight the effectiveness of our SER formulation, especially to improve performance in OOD scenarios.
We study the stochastic online metric matching problem. In this problem, $m$ servers and $n$ requests are located in a metric space, where all servers are available upfront and requests arrive one at a time. In particular, servers are adversarially chosen, and requests are independently drawn from a known distribution. Upon the arrival of a new request, it needs to be immediately and irrevocably matched to a free server, resulting in a cost of their distance. The objective is to minimize the total matching cost. In this paper, we show that the problem can be reduced to a more accessible setting where both servers and requests are drawn from the same distribution by incurring a moderate cost. Combining our reduction with previous techniques, for $[0, 1]^d$ with various choices of distributions, we achieve improved competitive ratios and nearly optimal regrets in both balanced and unbalanced markets. In particular, we give $O(1)$-competitive algorithms for $d \geq 3$ in both balanced and unbalanced markets with smooth distributions. Our algorithms improve on the $O((\log \log \log n)^2)$ competitive ratio of \cite{DBLP:conf/icalp/GuptaGPW19} for balanced markets in various regimes, and provide the first positive results for unbalanced markets.
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.