亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Masked Image Modeling (MIM) has been a prevailing framework for self-supervised visual representation learning. Within the pretraining-finetuning paradigm, the MIM framework trains an encoder by reconstructing masked image patches with the help of a decoder which would be abandoned when the encoder is used for finetuning. Despite its state-of-the-art performance on clean images, MIM models are vulnerable to adversarial attacks, limiting its real-world application, and few studies have focused on this issue. In this paper, we have discovered that noisy image modeling (NIM), a variant of MIM that uses denoising as the pre-text task, provides not only good pretrained visual features, but also effective adversarial defense for downstream models. To achieve a better accuracy-robustness trade-off, we further propose to sample the hyperparameter that controls the reconstruction difficulty from random distributions instead of setting it globally, and fine-tune downstream networks with denoised images. Experimental results demonstrate that our pre-trained denoising autoencoders are effective against different white-box, gray-box, and black-box attacks without being trained with adversarial images, while not harming the clean accuracy of fine-tuned models. Source code and models will be made available.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 哈希 · 對抗 · 漢明距離 · 樣本 ·
2023 年 3 月 25 日

Deep hashing has been extensively utilized in massive image retrieval because of its efficiency and effectiveness. However, deep hashing models are vulnerable to adversarial examples, making it essential to develop adversarial defense methods for image retrieval. Existing solutions achieved limited defense performance because of using weak adversarial samples for training and lacking discriminative optimization objectives to learn robust features. In this paper, we present a min-max based Center-guided Adversarial Training, namely CgAT, to improve the robustness of deep hashing networks through worst adversarial examples. Specifically, we first formulate the center code as a semantically-discriminative representative of the input image content, which preserves the semantic similarity with positive samples and dissimilarity with negative examples. We prove that a mathematical formula can calculate the center code immediately. After obtaining the center codes in each optimization iteration of the deep hashing network, they are adopted to guide the adversarial training process. On the one hand, CgAT generates the worst adversarial examples as augmented data by maximizing the Hamming distance between the hash codes of the adversarial examples and the center codes. On the other hand, CgAT learns to mitigate the effects of adversarial samples by minimizing the Hamming distance to the center codes. Extensive experiments on the benchmark datasets demonstrate the effectiveness of our adversarial training algorithm in defending against adversarial attacks for deep hashing-based retrieval. Compared with the current state-of-the-art defense method, we significantly improve the defense performance by an average of 18.61\%, 12.35\%, and 11.56\% on FLICKR-25K, NUS-WIDE, and MS-COCO, respectively. The code is available at //github.com/xunguangwang/CgAT.

Deep learning techniques have achieved superior performance in computer-aided medical image analysis, yet they are still vulnerable to imperceptible adversarial attacks, resulting in potential misdiagnosis in clinical practice. Oppositely, recent years have also witnessed remarkable progress in defense against these tailored adversarial examples in deep medical diagnosis systems. In this exposition, we present a comprehensive survey on recent advances in adversarial attack and defense for medical image analysis with a novel taxonomy in terms of the application scenario. We also provide a unified theoretical framework for different types of adversarial attack and defense methods for medical image analysis. For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models obtained by adversarial training under various scenarios. To the best of our knowledge, this is the first survey paper that provides a thorough evaluation of adversarially robust medical diagnosis models. By analyzing qualitative and quantitative results, we conclude this survey with a detailed discussion of current challenges for adversarial attack and defense in medical image analysis systems to shed light on future research directions.

The state of the arts in vision-language pretraining (VLP) achieves exemplary performance but suffers from high training costs resulting from slow convergence and long training time, especially on large-scale web datasets. An essential obstacle to training efficiency lies in the entangled prediction rate (percentage of tokens for reconstruction) and corruption rate (percentage of corrupted tokens) in masked language modeling (MLM), that is, a proper corruption rate is achieved at the cost of a large portion of output tokens being excluded from prediction loss. To accelerate the convergence of VLP, we propose a new pretraining task, namely, free language modeling (FLM), that enables a 100% prediction rate with arbitrary corruption rates. FLM successfully frees the prediction rate from the tie-up with the corruption rate while allowing the corruption spans to be customized for each token to be predicted. FLM-trained models are encouraged to learn better and faster given the same GPU time by exploiting bidirectional contexts more flexibly. Extensive experiments show FLM could achieve an impressive 2.5x pretraining time reduction in comparison to the MLM-based methods, while keeping competitive performance on both vision-language understanding and generation tasks. Code will be public at //github.com/TencentARC/FLM.

Adversarial training has been demonstrated to be the most effective approach to defend against adversarial attacks. However, existing adversarial training methods show apparent oscillations and overfitting issue in the training process, degrading the defense efficacy. In this work, we propose a novel framework, termed Parameter Interpolation based Adversarial Training (PIAT), that makes full use of the historical information during training. Specifically, at the end of each epoch, PIAT tunes the model parameters as the interpolation of the parameters of the previous and current epochs. Besides, we suggest to use the Normalized Mean Square Error (NMSE) to further improve the robustness by aligning the clean and adversarial examples. Compared with other regularization methods, NMSE focuses more on the relative magnitude of the logits rather than the absolute magnitude. Extensive experiments on several benchmark datasets and various networks show that our method could prominently improve the model robustness and reduce the generalization error. Moreover, our framework is general and could further boost the robust accuracy when combined with other adversarial training methods.

Deep neural networks obtained by standard training have been constantly plagued by adversarial examples. Although adversarial training demonstrates its capability to defend against adversarial examples, unfortunately, it leads to an inevitable drop in the natural generalization. To address the issue, we decouple the natural generalization and the robust generalization from joint training and formulate different training strategies for each one. Specifically, instead of minimizing a global loss on the expectation over these two generalization errors, we propose a bi-expert framework called \emph{Generalist} where we simultaneously train base learners with task-aware strategies so that they can specialize in their own fields. The parameters of base learners are collected and combined to form a global learner at intervals during the training process. The global learner is then distributed to the base learners as initialized parameters for continued training. Theoretically, we prove that the risks of Generalist will get lower once the base learners are well trained. Extensive experiments verify the applicability of Generalist to achieve high accuracy on natural examples while maintaining considerable robustness to adversarial ones. Code is available at //github.com/PKU-ML/Generalist.

Backdoor attacks inject poisoned data into the training set, resulting in misclassification of the poisoned samples during model inference. Defending against such attacks is challenging, especially in real-world black-box settings where only model predictions are available. In this paper, we propose a novel backdoor defense framework that can effectively defend against various attacks through zero-shot image purification (ZIP). Our proposed framework can be applied to black-box models without requiring any internal information about the poisoned model or any prior knowledge of the clean/poisoned samples. Our defense framework involves a two-step process. First, we apply a linear transformation on the poisoned image to destroy the trigger pattern. Then, we use a pre-trained diffusion model to recover the missing semantic information removed by the transformation. In particular, we design a new reverse process using the transformed image to guide the generation of high-fidelity purified images, which can be applied in zero-shot settings. We evaluate our ZIP backdoor defense framework on multiple datasets with different kinds of attacks. Experimental results demonstrate the superiority of our ZIP framework compared to state-of-the-art backdoor defense baselines. We believe that our results will provide valuable insights for future defense methods for black-box models.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

北京阿比特科技有限公司