Despite impressive results, deep learning-based technologies also raise severe privacy and environmental concerns induced by the training procedure often conducted in data centers. In response, alternatives to centralized training such as Federated Learning (FL) have emerged. Perhaps unexpectedly, FL is starting to be deployed at a global scale by companies that must adhere to new legal demands and policies originating from governments and social groups advocating for privacy protection. \textit{However, the potential environmental impact related to FL remains unclear and unexplored. This paper offers the first-ever systematic study of the carbon footprint of FL.} First, we propose a rigorous model to quantify the carbon footprint, hence facilitating the investigation of the relationship between FL design and carbon emissions. Then, we compare the carbon footprint of FL to traditional centralized learning. Our findings show that, depending on the configuration, FL can emit up to two order of magnitude more carbon than centralized machine learning. However, in certain settings, it can be comparable to centralized learning due to the reduced energy consumption of embedded devices. We performed extensive experiments across different types of datasets, settings and various deep learning models with FL. Finally, we highlight and connect the reported results to the future challenges and trends in FL to reduce its environmental impact, including algorithms efficiency, hardware capabilities, and stronger industry transparency.
Federated learning (FL) has emerged as a new paradigm for privacy-preserving computation in recent years. Unfortunately, FL faces two critical challenges that hinder its actual performance: data distribution heterogeneity and high resource costs brought by large foundation models. Specifically, the non-IID data in different clients make existing FL algorithms hard to converge while the high resource costs, including computational and communication costs that increase the deployment difficulty in real-world scenarios. In this paper, we propose an effective yet simple method, named FedCLIP, to achieve fast generalization and personalization for CLIP in federated learning. Concretely, we design an attention-based adapter for the large model, CLIP, and the rest operations merely depend on adapters. Lightweight adapters can make the most use of pretrained model information and ensure models be adaptive for clients in specific tasks. Simultaneously, small-scale operations can mitigate the computational burden and communication burden caused by large models. Extensive experiments are conducted on three datasets with distribution shifts. Qualitative and quantitative results demonstrate that FedCLIP significantly outperforms other baselines (9% overall improvements on PACS) and effectively reduces computational and communication costs (283x faster than FedAVG). Our code will be available at: //github.com/microsoft/PersonalizedFL.
Recent advances in the development of large language models are rapidly changing how online applications function. LLM-based search tools, for instance, offer a natural language interface that can accommodate complex queries and provide detailed, direct responses. At the same time, there have been concerns about the veracity of the information provided by LLM-based tools due to potential mistakes or fabrications that can arise in algorithmically generated text. In a set of online experiments we investigate how LLM-based search changes people's behavior relative to traditional search, and what can be done to mitigate overreliance on LLM-based output. Participants in our experiments were asked to solve a series of decision tasks that involved researching and comparing different products, and were randomly assigned to do so with either an LLM-based search tool or a traditional search engine. In our first experiment, we find that participants using the LLM-based tool were able to complete their tasks more quickly, using fewer but more complex queries than those who used traditional search. Moreover, these participants reported a more satisfying experience with the LLM-based search tool. When the information presented by the LLM was reliable, participants using the tool made decisions with a comparable level of accuracy to those using traditional search, however we observed overreliance on incorrect information when the LLM erred. Our second experiment further investigated this issue by randomly assigning some users to see a simple color-coded highlighting scheme to alert them to potentially incorrect or misleading information in the LLM responses. Overall we find that this confidence-based highlighting substantially increases the rate at which users spot incorrect information, improving the accuracy of their overall decisions while leaving most other measures unaffected.
While federated learning (FL) promises to preserve privacy, recent works in the image and text domains have shown that training updates leak private client data. However, most high-stakes applications of FL (e.g., in healthcare and finance) use tabular data, where the risk of data leakage has not yet been explored. A successful attack for tabular data must address two key challenges unique to the domain: (i) obtaining a solution to a high-variance mixed discrete-continuous optimization problem, and (ii) enabling human assessment of the reconstruction as unlike for image and text data, direct human inspection is not possible. In this work we address these challenges and propose TabLeak, the first comprehensive reconstruction attack on tabular data. TabLeak is based on two key contributions: (i) a method which leverages a softmax relaxation and pooled ensembling to solve the optimization problem, and (ii) an entropy-based uncertainty quantification scheme to enable human assessment. We evaluate TabLeak on four tabular datasets for both FedSGD and FedAvg training protocols, and show that it successfully breaks several settings previously deemed safe. For instance, we extract large subsets of private data at >90% accuracy even at the large batch size of 128. Our findings demonstrate that current high-stakes tabular FL is excessively vulnerable to leakage attacks.
The rapid expansion of the Internet of Things (IoT) and Edge Computing has presented challenges for centralized Machine and Deep Learning (ML/DL) methods due to the presence of distributed data silos that hold sensitive information. To address concerns regarding data privacy, collaborative and privacy-preserving ML/DL techniques like Federated Learning (FL) have emerged. However, ensuring data privacy and performance alone is insufficient since there is a growing need to establish trust in model predictions. Existing literature has proposed various approaches on trustworthy ML/DL (excluding data privacy), identifying robustness, fairness, explainability, and accountability as important pillars. Nevertheless, further research is required to identify trustworthiness pillars and evaluation metrics specifically relevant to FL models, as well as to develop solutions that can compute the trustworthiness level of FL models. This work examines the existing requirements for evaluating trustworthiness in FL and introduces a comprehensive taxonomy consisting of six pillars (privacy, robustness, fairness, explainability, accountability, and federation), along with over 30 metrics for computing the trustworthiness of FL models. Subsequently, an algorithm named FederatedTrust is designed based on the pillars and metrics identified in the taxonomy to compute the trustworthiness score of FL models. A prototype of FederatedTrust is implemented and integrated into the learning process of FederatedScope, a well-established FL framework. Finally, five experiments are conducted using different configurations of FederatedScope to demonstrate the utility of FederatedTrust in computing the trustworthiness of FL models. Three experiments employ the FEMNIST dataset, and two utilize the N-BaIoT dataset considering a real-world IoT security use case.
The surveillance of a pandemic is a challenging task, especially when crucial data is distributed and stakeholders cannot or are unwilling to share. To overcome this obstacle, federated methodologies should be developed to incorporate less sensitive evidence that entities are willing to provide. This study aims to explore the feasibility of pushing hypothesis tests behind each custodian's firewall and then meta-analysis to combine the results, and to determine the optimal approach for reconstructing the hypothesis test and optimizing the inference. We propose a hypothesis testing framework to identify a surge in the indicators and conduct power analyses and experiments on real and semi-synthetic data to showcase the properties of our proposed hypothesis test and suggest suitable methods for combining $p$-values. Our findings highlight the potential of using $p$-value combination as a federated methodology for pandemic surveillance and provide valuable insights into integrating available data sources.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.