亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite pre-trained language models have proven useful for learning high-quality semantic representations, these models are still vulnerable to simple perturbations. Recent works aimed to improve the robustness of pre-trained models mainly focus on adversarial training from perturbed examples with similar semantics, neglecting the utilization of different or even opposite semantics. Different from the image processing field, the text is discrete and few word substitutions can cause significant semantic changes. To study the impact of semantics caused by small perturbations, we conduct a series of pilot experiments and surprisingly find that adversarial training is useless or even harmful for the model to detect these semantic changes. To address this problem, we propose Contrastive Learning with semantIc Negative Examples (CLINE), which constructs semantic negative examples unsupervised to improve the robustness under semantically adversarial attacking. By comparing with similar and opposite semantic examples, the model can effectively perceive the semantic changes caused by small perturbations. Empirical results show that our approach yields substantial improvements on a range of sentiment analysis, reasoning, and reading comprehension tasks. And CLINE also ensures the compactness within the same semantics and separability across different semantics in sentence-level.

相關內容

Pre-trained Language Models (PLMs) have shown superior performance on various downstream Natural Language Processing (NLP) tasks. However, conventional pre-training objectives do not explicitly model relational facts in text, which are crucial for textual understanding. To address this issue, we propose a novel contrastive learning framework ERICA to obtain a deep understanding of the entities and their relations in text. Specifically, we define two novel pre-training tasks to better understand entities and relations: (1) the entity discrimination task to distinguish which tail entity can be inferred by the given head entity and relation; (2) the relation discrimination task to distinguish whether two relations are close or not semantically, which involves complex relational reasoning. Experimental results demonstrate that ERICA can improve typical PLMs (BERT and RoBERTa) on several language understanding tasks, including relation extraction, entity typing and question answering, especially under low-resource settings.

We evaluate the effectiveness of semi-supervised learning (SSL) on a realistic benchmark where data exhibits considerable class imbalance and contains images from novel classes. Our benchmark consists of two fine-grained classification datasets obtained by sampling classes from the Aves and Fungi taxonomy. We find that recently proposed SSL methods provide significant benefits, and can effectively use out-of-class data to improve performance when deep networks are trained from scratch. Yet their performance pales in comparison to a transfer learning baseline, an alternative approach for learning from a few examples. Furthermore, in the transfer setting, while existing SSL methods provide improvements, the presence of out-of-class is often detrimental. In this setting, standard fine-tuning followed by distillation-based self-training is the most robust. Our work suggests that semi-supervised learning with experts on realistic datasets may require different strategies than those currently prevalent in the literature.

Contrastive learning relies on constructing a collection of negative examples that are sufficiently hard to discriminate against positive queries when their representations are self-trained. Existing contrastive learning methods either maintain a queue of negative samples over minibatches while only a small portion of them are updated in an iteration, or only use the other examples from the current minibatch as negatives. They could not closely track the change of the learned representation over iterations by updating the entire queue as a whole, or discard the useful information from the past minibatches. Alternatively, we present to directly learn a set of negative adversaries playing against the self-trained representation. Two players, the representation network and negative adversaries, are alternately updated to obtain the most challenging negative examples against which the representation of positive queries will be trained to discriminate. We further show that the negative adversaries are updated towards a weighted combination of positive queries by maximizing the adversarial contrastive loss, thereby allowing them to closely track the change of representations over time. Experiment results demonstrate the proposed Adversarial Contrastive (AdCo) model not only achieves superior performances (a top-1 accuracy of 73.2\% over 200 epochs and 75.7\% over 800 epochs with linear evaluation on ImageNet), but also can be pre-trained more efficiently with fewer epochs.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Contrastive learning (CL) is a popular technique for self-supervised learning (SSL) of visual representations. It uses pairs of augmentations of unlabeled training examples to define a classification task for pretext learning of a deep embedding. Despite extensive works in augmentation procedures, prior works do not address the selection of challenging negative pairs, as images within a sampled batch are treated independently. This paper addresses the problem, by introducing a new family of adversarial examples for constrastive learning and using these examples to define a new adversarial training algorithm for SSL, denoted as CLAE. When compared to standard CL, the use of adversarial examples creates more challenging positive pairs and adversarial training produces harder negative pairs by accounting for all images in a batch during the optimization. CLAE is compatible with many CL methods in the literature. Experiments show that it improves the performance of several existing CL baselines on multiple datasets.

We consider the question: how can you sample good negative examples for contrastive learning? We argue that, as with metric learning, learning contrastive representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor point). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use label information. In response, we develop a new class of unsupervised methods for selecting hard negative samples where the user can control the amount of hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.

Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies either at the image or the feature level improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing the memory size, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.

Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, i.e., the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, a novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the data features and input graph topology is extracted as supplementary supervision signals for SSL via using a graph generative loss related to the input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm compared with other state-of-the-art methods.

Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation accuracy. In this paper, we investigate using data augmentation approach to balance the semantic label distribution in order to improve segmentation performance. We propose using generative adversarial networks (GANs) to generate realistic images for improving the performance of semantic segmentation networks. Experimental results show that the proposed method can not only improve segmentation performance on those classes with low accuracy, but also obtain 1.3% to 2.1% increase in average segmentation accuracy. It shows that this augmentation method can boost accuracy and be easily applicable to any other segmentation models.

Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage could come from similar but different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.

北京阿比特科技有限公司