The increasing capabilities of large language models (LLMs) raise opportunities for artificial general intelligence but concurrently amplify safety concerns, such as potential misuse of AI systems, necessitating effective AI alignment. Reinforcement Learning from Human Feedback (RLHF) has emerged as a promising pathway towards AI alignment but brings forth challenges due to its complexity and dependence on a separate reward model. Direct Preference Optimization (DPO) has been proposed as an alternative, and it remains equivalent to RLHF under the reverse KL regularization constraint. This paper presents $f$-DPO, a generalized approach to DPO by incorporating diverse divergence constraints. We show that under certain $f$-divergences, including Jensen-Shannon divergence, forward KL divergences and $\alpha$-divergences, the complex relationship between the reward and optimal policy can also be simplified by addressing the Karush-Kuhn-Tucker conditions. This eliminates the need for estimating the normalizing constant in the Bradley-Terry model and enables a tractable mapping between the reward function and the optimal policy. Our approach optimizes LLMs to align with human preferences in a more efficient and supervised manner under a broad set of divergence constraints. Empirically, adopting these divergences ensures a balance between alignment performance and generation diversity. Importantly, $f$-DPO outperforms PPO-based methods in divergence efficiency, and divergence constraints directly influence expected calibration error (ECE).
While large language models exhibit remarkable performance in the Question Answering task, they are susceptible to hallucinations. Challenges arise when these models grapple with understanding multi-hop relations in complex questions or lack the necessary knowledge for a comprehensive response. To address this issue, we introduce the "Decompose-and-Query" framework (D&Q). This framework guides the model to think and utilize external knowledge similar to ReAct, while also restricting its thinking to reliable information, effectively mitigating the risk of hallucinations. Experiments confirm the effectiveness of D&Q: On our ChitChatQA dataset, D&Q does not lose to ChatGPT in 67% of cases; on the HotPotQA question-only setting, D&Q achieved an F1 score of 59.6%. Our code is available at //github.com/alkaidpku/DQ-ToolQA.
The emergence of large language models (LLMs) further improves the capabilities of open-domain dialogue systems and can generate fluent, coherent, and diverse responses. However, LLMs still lack an important ability: communication skills, which makes them more like information seeking tools than anthropomorphic chatbots. To make LLMs more anthropomorphic and proactive during the conversation, we add five communication skills to the response generation process: topic transition, proactively asking questions, concept guidance, empathy, and summarising often. The addition of communication skills increases the interest of users in the conversation and attracts them to chat for longer. To enable LLMs better understand and use communication skills, we design and add the inner monologue to LLMs. The complete process is achieved through prompt engineering and in-context learning. To evaluate communication skills, we construct a benchmark named Cskills for evaluating various communication skills, which can also more comprehensively evaluate the dialogue generation ability of the model. Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines in both automatic and human evaluations.
This article proposes a social simulation paradigm based on the GPT-3.5 large language model. It involves constructing Generative Agents that emulate human cognition, memory, and decision-making frameworks, along with establishing a virtual social system capable of stable operation and an insertion mechanism for standardized public events. The project focuses on simulating a township water pollution incident, enabling the comprehensive examination of a virtual government's response to a specific public administration event. Controlled variable experiments demonstrate that the stored memory in generative agents significantly influences both individual decision-making and social networks. The Generative Agent-Based Simulation System introduces a novel approach to social science and public administration research. Agents exhibit personalized customization, and public events are seamlessly incorporated through natural language processing. Its high flexibility and extensive social interaction render it highly applicable in social science investigations. The system effectively reduces the complexity associated with building intricate social simulations while enhancing its interpretability.
Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.
Despite their impressive performance, large language models (LMs) still struggle with reliably generating complex output structures when not finetuned to follow the required output format exactly. To address this issue, grammar-constrained decoding (GCD) can be used to control the generation of LMs, guaranteeing that the output follows a given structure. Most existing GCD methods are, however, limited to specific tasks, such as parsing or code generation. In this work, we demonstrate that formal grammars can describe the output space for a much wider range of tasks and argue that GCD can serve as a unified framework for structured NLP tasks in general. For increased flexibility, we introduce input-dependent grammars, which allow the grammar to depend on the input and thus enable the generation of different output structures for different inputs. We then empirically demonstrate the power and flexibility of GCD-enhanced LMs on (1) information extraction, (2) entity disambiguation, and (3) constituency parsing. Our results indicate that grammar-constrained LMs substantially outperform unconstrained LMs or even beat task-specific finetuned models. Grammar constraints thus hold great promise for harnessing off-the-shelf LMs for a wide range of structured NLP tasks, especially where training data is scarce or finetuning is expensive. Code and data: //github.com/epfl-dlab/GCD.
The improvements in received signal power brought about by a reflective intelligent surface (RIS) might be overstated if background propagation mechanisms such as reflections, scattering, and diffraction are ignored. This paper addresses this issue for non-line-of-sight indoor settings, contrasting the energy conveyed by an RIS with the energy already reaching the receiver through environmental reflections. And, to prevent artifacts, such naturally occurring reflections are not modeled via approximate methods, but rather through a rigorous physics-based formulation. It is found that the environment contributes a level of energy commensurate with that of an ideal RIS of considerable size; to have substantial impact, an actual RIS would have to generously exceed this size.
Large language models (LLMs) have demonstrated remarkable potential in natural language understanding and generation, making them valuable tools for enhancing conversational interactions. However, LLMs encounter challenges such as lacking multi-step reasoning capabilities, and heavy reliance on prompts. In this regard, we introduce a prompt-refinement system named PromptMind, also known as "Prompt Your Mind", to provide an automated solution for generating contextually relevant prompts during conversations. PromptMind enhances the overall interaction between humans and chatbots through an automatic prompt suggestion and an automatic prompt refinement. To assess the effectiveness of PromptMind, we designed three interaction tasks to evaluate emotional support, advice acquisition, and task-oriented interactions during human-chatbot interactions. The results demonstrated that PromptMind reduced mental demands during interactions and fostered enhanced performance and social connections between users and chatbots. In summary, our findings indicate that PromptMind acts as a bridge, facilitating smoother information exchange and enhancing the usability of chatbot interactions.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.