In this paper, we propose a new secure machine learning inference platform assisted by a small dedicated security processor, which will be easier to protect and deploy compared to today's TEEs integrated into high-performance processors. Our platform provides three main advantages over the state-of-the-art: (i) We achieve significant performance improvements compared to state-of-the-art distributed Privacy-Preserving Machine Learning (PPML) protocols, with only a small security processor that is comparable to a discrete security chip such as the Trusted Platform Module (TPM) or on-chip security subsystems in SoCs similar to the Apple enclave processor. In the semi-honest setting with WAN/GPU, our scheme is 4X-63X faster than Falcon (PoPETs'21) and AriaNN (PoPETs'22) and 3.8X-12X more communication efficient. We achieve even higher performance improvements in the malicious setting. (ii) Our platform guarantees security with abort against malicious adversaries under honest majority assumption. (iii) Our technique is not limited by the size of secure memory in a TEE and can support high-capacity modern neural networks like ResNet18 and Transformer. While previous work investigated the use of high-performance TEEs in PPML, this work represents the first to show that even tiny secure hardware with really limited performance can be leveraged to significantly speed-up distributed PPML protocols if the protocol can be carefully designed for lightweight trusted hardware.
This paper presents a novel technique for accelerating inference in large, pre-trained language models (LLMs) by introducing early exits during inference. The computational demands of these models, used across a wide range of applications, can be substantial. By capitalizing on the inherent variability in token complexity, our approach enables selective acceleration of the inference process. Specifically, we propose the integration of early exit ''heads'' atop existing transformer layers, which facilitate conditional terminations based on a confidence metric. These heads are trained in a self-supervised manner using the model's own predictions as training data, thereby eliminating the need for additional annotated data. The confidence metric, established using a calibration set, ensures a desired level of accuracy while enabling early termination when confidence exceeds a predetermined threshold. Notably, our method preserves the original accuracy and reduces computational time on certain tasks, leveraging the existing knowledge of pre-trained LLMs without requiring extensive retraining. This lightweight, modular modification has the potential to greatly enhance the practical usability of LLMs, particularly in applications like real-time language processing in resource-constrained environments.
In this paper, we present a new approach to improving the relevance and reliability of medical IR, which builds upon the concept of Level of Evidence (LoE). LoE framework categorizes medical publications into 7 distinct levels based on the underlying empirical evidence. Despite LoE framework's relevance in medical research and evidence-based practice, only few medical publications explicitly state their LoE. Therefore, we develop a classification model for automatically assigning LoE to medical publications, which successfully classifies over 26 million documents in MEDLINE database into LoE classes. The subsequent retrieval experiments on TREC PM datasets show substantial improvements in retrieval relevance, when LoE is used as a search filter.
In this paper, we propose an interoceptive-only odometry system for ground robots with neural network processing and soft constraints based on the assumption of a globally continuous ground manifold. Exteroceptive sensors such as cameras, GPS and LiDAR may encounter difficulties in scenarios with poor illumination, indoor environments, dusty areas and straight tunnels. Therefore, improving the pose estimation accuracy only using interoceptive sensors is important to enhance the reliability of navigation system even in degrading scenarios mentioned above. However, interoceptive sensors like IMU and wheel encoders suffer from large drift due to noisy measurements. To overcome these challenges, the proposed system trains deep neural networks to correct the measurements from IMU and wheel encoders, while considering their uncertainty. Moreover, because ground robots can only travel on the ground, we model the ground surface as a globally continuous manifold using a dual cubic B-spline manifold to further improve the estimation accuracy by this soft constraint. A novel space-based sliding-window filtering framework is proposed to fully exploit the $C^2$ continuity of ground manifold soft constraints and fuse all the information from raw measurements and neural networks in a yaw-independent attitude convention. Extensive experiments demonstrate that our proposed approach can outperform state-of-the-art learning-based interoceptive-only odometry methods.
In this paper, we build a general model of memristors suitable for the simulation of event-based systems, such as hardware spiking neural networks, and more generally, neuromorphic computing systems. We extend an existing general model of memristors - the Generalised Metastable Switch Model - to an event-driven setting, eliminating errors associated discrete time approximation, as well as offering potential improvements in terms of computational efficiency for simulation. We introduce the notion of a volatility state variable, to allow for the modelling of memory-dependent and dynamic switching behaviour, succinctly capturing and unifying a variety of volatile phenomena present in memristive devices, including state relaxation, structural disruption, Joule heating, and drift acceleration phenomena. We supply a drift dataset for titanium dioxide memristors and introduce a linear conductance model to simulate the drift characteristics, motivated by a proposed physical model of filament growth. We then demonstrate an approach for fitting the parameters of the event-based model to the drift model.
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
In this paper, we investigated semantic communication for multi-task processing using an information-theoretic approach. We introduced the concept of a "semantic source", allowing multiple semantic interpretations from a single observation. We formulated an end-to-end optimization problem taking into account the communication channel, maximizing mutual information (infomax) to design the semantic encoding and decoding process exploiting the statistical relations between semantic variables. To solve the problem we perform data-driven deep learning employing variational approximation techniques. Our semantic encoder is divided into a common unit and multiple specific units to facilitate cooperative multi-task processing. Simulation results demonstrate the effectiveness of our proposed semantic source and system design when statistical relationships exist, comparing cooperative task processing with independent task processing. However, our findings highlight that cooperative multi-tasking is not always beneficial, emphasizing the importance of statistical relationships between tasks and indicating the need for further investigation into the semantically processing of multiple tasks.
In this paper, we introduce a novel and computationally efficient method for vertex embedding, community detection, and community size determination. Our approach leverages a normalized one-hot graph encoder and a rank-based cluster size measure. Through extensive simulations, we demonstrate the excellent numerical performance of our proposed graph encoder ensemble algorithm.
In this paper, we investigate the extrapolation capabilities of implicit deep learning models in handling unobserved data, where traditional deep neural networks may falter. Implicit models, distinguished by their adaptability in layer depth and incorporation of feedback within their computational graph, are put to the test across various extrapolation scenarios: out-of-distribution, geographical, and temporal shifts. Our experiments consistently demonstrate significant performance advantage with implicit models. Unlike their non-implicit counterparts, which often rely on meticulous architectural design for each task, implicit models demonstrate the ability to learn complex model structures without the need for task-specific design, highlighting their robustness in handling unseen data.
In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.
In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.