亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This preprint presents the current status of research into the development and application of an autonomous, self-driving compost turner. The aim is to overcome challenges in the composting industry, such as adverse working conditions, by automating the composting process. The preprint provides a comprehensive overview of the overall concept of the self-driving compost turner, including the hardware architecture with sensors, navigation module and control module. In addition, the methodical development of the architecture of concepts, models and their subsequent software integration in ROS using model-based systems engineering is described. The validation and verification of the overall system is carried out in an industrial environment using three scenarios. The capabilities of the compost turner are demonstrated by autonomously following predefined trajectories in the composting plant and performing the required composting tasks. The results show that the autonomous compost turner is capable of performing the required activities. In addition, the compost turner has intelligent processing capabilities for compost data as well as its transmission, visualization and storage in a cloud server. It is important to note that this work is a preprint that represents the current state of research. The authors aim to publish the full paper in a peer-reviewed journal in the near future.

相關內容

This study proposes a system designed to enumerate the process of collaborative composition among humans, using automatic music composition technology. By integrating multiple Recurrent Neural Network (RNN) models, the system provides an experience akin to collaborating with several composers, thereby fostering diverse creativity. Through dynamic adaptation to the user's creative intentions, based on feedback, the system enhances its capability to generate melodies that align with user preferences and creative needs. The system's effectiveness was evaluated through experiments with composers of varying backgrounds, revealing its potential to facilitate musical creativity and suggesting avenues for further refinement. The study underscores the importance of interaction between the composer and AI, aiming to make music composition more accessible and personalized. This system represents a step towards integrating AI into the creative process, offering a new tool for composition support and collaborative artistic exploration.

In the era of personalized education, the provision of comprehensible explanations for learning recommendations is of a great value to enhance the learner's understanding and engagement with the recommended learning content. Large language models (LLMs) and generative AI in general have recently opened new doors for generating human-like explanations, for and along learning recommendations. However, their precision is still far away from acceptable in a sensitive field like education. To harness the abilities of LLMs, while still ensuring a high level of precision towards the intent of the learners, this paper proposes an approach to utilize knowledge graphs (KG) as a source of factual context, for LLM prompts, reducing the risk of model hallucinations, and safeguarding against wrong or imprecise information, while maintaining an application-intended learning context. We utilize the semantic relations in the knowledge graph to offer curated knowledge about learning recommendations. With domain-experts in the loop, we design the explanation as a textual template, which is filled and completed by the LLM. Domain experts were integrated in the prompt engineering phase as part of a study, to ensure that explanations include information that is relevant to the learner. We evaluate our approach quantitatively using Rouge-N and Rouge-L measures, as well as qualitatively with experts and learners. Our results show an enhanced recall and precision of the generated explanations compared to those generated solely by the GPT model, with a greatly reduced risk of generating imprecise information in the final learning explanation.

In autonomous driving, 3D occupancy prediction outputs voxel-wise status and semantic labels for more comprehensive understandings of 3D scenes compared with traditional perception tasks, such as 3D object detection and bird's-eye view (BEV) semantic segmentation. Recent researchers have extensively explored various aspects of this task, including view transformation techniques, ground-truth label generation, and elaborate network design, aiming to achieve superior performance. However, the inference speed, crucial for running on an autonomous vehicle, is neglected. To this end, a new method, dubbed FastOcc, is proposed. By carefully analyzing the network effect and latency from four parts, including the input image resolution, image backbone, view transformation, and occupancy prediction head, it is found that the occupancy prediction head holds considerable potential for accelerating the model while keeping its accuracy. Targeted at improving this component, the time-consuming 3D convolution network is replaced with a novel residual-like architecture, where features are mainly digested by a lightweight 2D BEV convolution network and compensated by integrating the 3D voxel features interpolated from the original image features. Experiments on the Occ3D-nuScenes benchmark demonstrate that our FastOcc achieves state-of-the-art results with a fast inference speed.

We present AlloyInEcore, a tool for specifying metamodels with their static semantics to facilitate automated, formal reasoning on models. Software development projects require that software systems be specified in various models (e.g., requirements models, architecture models, test models, and source code). It is crucial to reason about those models to ensure the correct and complete system specifications. AlloyInEcore allows the user to specify metamodels with their static semantics, while, using the semantics, it automatically detects inconsistent models, and completes partial models. It has been evaluated on three industrial case studies in the automotive domain (//modelwriter.github.io/AlloyInEcore/).

In the rapidly evolving landscape of autonomous driving, the capability to accurately predict future events and assess their implications is paramount for both safety and efficiency, critically aiding the decision-making process. World models have emerged as a transformative approach, enabling autonomous driving systems to synthesize and interpret vast amounts of sensor data, thereby predicting potential future scenarios and compensating for information gaps. This paper provides an initial review of the current state and prospective advancements of world models in autonomous driving, spanning their theoretical underpinnings, practical applications, and the ongoing research efforts aimed at overcoming existing limitations. Highlighting the significant role of world models in advancing autonomous driving technologies, this survey aspires to serve as a foundational reference for the research community, facilitating swift access to and comprehension of this burgeoning field, and inspiring continued innovation and exploration.

We present Umwelt, an authoring environment for interactive multimodal data representations. In contrast to prior approaches, which center the visual modality, Umwelt treats visualization, sonification, and textual description as coequal representations: they are all derived from a shared abstract data model, such that no modality is prioritized over the others. To simplify specification, Umwelt evaluates a set of heuristics to generate default multimodal representations that express a dataset's functional relationships. To support smoothly moving between representations, Umwelt maintains a shared query predicated that is reified across all modalities -- for instance, navigating the textual description also highlights the visualization and filters the sonification. In a study with 5 blind / low-vision expert users, we found that Umwelt's multimodal representations afforded complementary overview and detailed perspectives on a dataset, allowing participants to fluidly shift between task- and representation-oriented ways of thinking.

Many machine learning and data mining algorithms rely on the assumption that the training and testing data share the same feature space and distribution. However, this assumption may not always hold. For instance, there are situations where we need to classify data in one domain, but we only have sufficient training data available from a different domain. The latter data may follow a distinct distribution. In such cases, successfully transferring knowledge across domains can significantly improve learning performance and reduce the need for extensive data labeling efforts. Transfer learning (TL) has thus emerged as a promising framework to tackle this challenge, particularly in security-related tasks. This paper aims to review the current advancements in utilizing TL techniques for security. The paper includes a discussion of the existing research gaps in applying TL in the security domain, as well as exploring potential future research directions and issues that arise in the context of TL-assisted security solutions.

Despite the importance of trust in human-AI interactions, researchers must adopt questionnaires from other disciplines that lack validation in the AI context. Motivated by the need for reliable and valid measures, we investigated the psychometric quality of two trust questionnaires, the Trust between People and Automation scale (TPA) by Jian et al. (2000) and the Trust Scale for the AI Context (TAI) by Hoffman et al. (2023). In a pre-registered online experiment (N = 1485), participants observed interactions with trustworthy and untrustworthy AI (autonomous vehicle and chatbot). Results support the psychometric quality of the TAI while revealing opportunities to improve the TPA, which we outline in our recommendations for using the two questionnaires. Furthermore, our findings provide additional empirical evidence of trust and distrust as two distinct constructs that may coexist independently. Building on our findings, we highlight the opportunities and added value of measuring both trust and distrust in human-AI research and advocate for further work on both constructs.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司