亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a high-level navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states. Using a custom-built quadruped robot, we demonstrate that our method can complete the course at half the speed of a dog. We hope that our work represents a step towards creating controllers that enable robots to reach animal-level agility.

相關內容

Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works.

The exploration of the lunar poles and the collection of samples from the martian surface are characterized by shorter time windows demanding increased autonomy and speeds. Autonomous mobile robots must intrinsically cope with a wider range of disturbances. Faster off-road navigation has been explored for terrestrial applications but the combined effects of increased speeds and reduced gravity fields are yet to be fully studied. In this paper, we design and demonstrate a novel fully passive suspension design for wheeled planetary robots, which couples a high-range passive rocker with elastic in-wheel coil-over shock absorbers. The design was initially conceived and verified in a reduced-gravity (1.625 m/s$^2$) simulated environment, where three different passive suspension configurations were evaluated against a set of challenges--climbing steep slopes and surmounting unexpected obstacles like rocks and outcrops--and later prototyped and validated in a series of field tests. The proposed mechanically-hybrid suspension proves to mitigate more effectively the negative effects (high-frequency/high-amplitude vibrations and impact loads) of faster locomotion (>1 m/s) over unstructured terrains under varied gravity fields. This lowers the demand on navigation and control systems, impacting the efficiency of exploration missions in the years to come.

A long-lasting goal of robotics research is to operate robots safely, while achieving high performance which often involves fast motions. Traditional motor-driven systems frequently struggle to balance these competing demands. Addressing this trade-off is crucial for advancing fields such as manufacturing and healthcare, where seamless collaboration between robots and humans is essential. We introduce a four degree-of-freedom (DoF) tendon-driven robot arm, powered by pneumatic artificial muscles (PAMs), to tackle this challenge. Our new design features low friction, passive compliance, and inherent impact resilience, enabling rapid, precise, high-force, and safe interactions during dynamic tasks. In addition to fostering safer human-robot collaboration, the inherent safety properties are particularly beneficial for reinforcement learning, where the robot's ability to explore dynamic motions without causing self-damage is crucial. We validate our robotic arm through various experiments, including long-term dynamic motions, impact resilience tests, and assessments of its ease of control. On a challenging dynamic table tennis task, we further demonstrate our robot's capabilities in rapid and precise movements. By showcasing our new design's potential, we aim to inspire further research on robotic systems that balance high performance and safety in diverse tasks. Our open-source hardware design, software, and a large dataset of diverse robot motions can be found at //webdav.tuebingen.mpg.de/pamy2/.

The past decade has witnessed the flourishing of a new profession as media content creators, who rely on revenue streams from online content recommendation platforms. The reward mechanism employed by these platforms creates a competitive environment among creators which affect their production choices and, consequently, content distribution and system welfare. It is thus crucial to design the platform's reward mechanism in order to steer the creators' competition towards a desirable welfare outcome in the long run. This work makes two major contributions in this regard: first, we uncover a fundamental limit about a class of widely adopted mechanisms, coined Merit-based Monotone Mechanisms, by showing that they inevitably lead to a constant fraction loss of the optimal welfare. To circumvent this limitation, we introduce Backward Rewarding Mechanisms (BRMs) and show that the competition game resultant from BRMs possesses a potential game structure. BRMs thus naturally induce strategic creators' collective behaviors towards optimizing the potential function, which can be designed to match any given welfare metric. In addition, the BRM class can be parameterized to allow the platform to directly optimize welfare within the feasible mechanism space even when the welfare metric is not explicitly defined.

Developers interrupting their participation in a project might slowly forget critical information about the code, such as its intended purpose, structure, the impact of external dependencies, and the approach used for implementation. Forgetting the implementation details can have detrimental effects on software maintenance, comprehension, knowledge sharing, and developer productivity, resulting in bugs, and other issues that can negatively influence the software development process. Therefore, it is crucial to ensure that developers have a clear understanding of the codebase and can work efficiently and effectively even after long interruptions. This registered report proposes an empirical study aimed at investigating the impact of the developer's activity breaks duration and different code quality properties. In particular, we aim at understanding if the amount of activity in a project impact the code quality, and if developers with different activity profiles show different impacts on code quality. The results might be useful to understand if it is beneficial to promote the practice of developing multiple projects in parallel, or if it is more beneficial to reduce the number of projects each developer contributes.

Generative AI tools such as chatGPT are poised to change the way people engage with online information. Recently, Microsoft announced their "new Bing" search system which incorporates chat and generative AI technology from OpenAI. Google has announced plans to deploy search interfaces that incorporate similar types of technology. These new technologies will transform how people can search for information. The research presented here is an early investigation into how people make use of a generative AI chat system (referred to simply as chat from here on) as part of a search process, and how the incorporation of chat systems with existing search tools may effect users search behaviors and strategies. We report on an exploratory user study with 10 participants who used a combined Chat+Search system that utilized the OpenAI GPT-3.5 API and the Bing Web Search v5 API. Participants completed three search tasks. In this pre-print paper of preliminary results, we report on ways that users integrated AI chat into their search process, things they liked and disliked about the chat system, their trust in the chat responses, and their mental models of how the chat system generated responses.

This paper presents a continuation of the previous research on the interaction between a human traffic manager and the UATMS. In particular, we focus on the automation of the process of handling a vertiport outage, which was partially covered in the previous work. Once the manager reports that a vertiport is out of service, which means landings for all corresponding agents are prohibited, the air traffic system automates what it has to handle for this event. The entire process is simulated through knowledge representation and reasoning. Moreover, two distinct perspectives are respected for the human supervisor and the management system, and the related ontologies and rules address their interactions. We believe that applying non-monotonic reasoning can verify each step of the process and explain how the system works. After a short introduction with related works, this paper continues with problem formulation, primary solution, discussion, and conclusions.

Building on the success of Neural Radiance Fields (NeRFs), recent years have seen significant advances in the domain of novel view synthesis. These models capture the scene's volumetric radiance field, creating highly convincing dense photorealistic models through the use of simple, differentiable rendering equations. Despite their popularity, these algorithms suffer from severe ambiguities in visual data inherent to the RGB sensor, which means that although images generated with view synthesis can visually appear very believable, the underlying 3D model will often be wrong. This considerably limits the usefulness of these models in practical applications like Robotics and Extended Reality (XR), where an accurate dense 3D reconstruction otherwise would be of significant value. In this technical report, we present the vital differences between view synthesis models and 3D reconstruction models. We also comment on why a depth sensor is essential for modeling accurate geometry in general outward-facing scenes using the current paradigm of novel view synthesis methods. Focusing on the structure-from-motion task, we practically demonstrate this need by extending the Plenoxel radiance field model: Presenting an analytical differential approach for dense mapping and tracking with radiance fields based on RGB-D data without a neural network. Our method achieves state-of-the-art results in both the mapping and tracking tasks while also being faster than competing neural network-based approaches.

The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate $21$ open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at //kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

北京阿比特科技有限公司