亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum candies (qandies) is a pedagogical simple model which describes many concepts from quantum information processing (QIP) intuitively, without the need to understand or make use of superpositions, and without the need of using complex algebra. One of the topics in quantum cryptography which gains research attention in recent years is quantum digital signatures (QDS), involving protocols to securely sign classical bits using quantum methods. In this paper we show how the "qandy model" can be used to describe three QDS protocols, in order to provide an important and potentially practical example of the power of "superpositionless" quantum information processing, for individuals without background knowledge in the field.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 可辨認的 · Hacking · 似然 · CASE ·
2022 年 2 月 21 日

Networked-Control Systems (NCSs), a type of cyber-physical systems, consist of tightly integrated computing, communication and control technologies. While being very flexible environments, they are vulnerable to computing and networking attacks. Recent NCSs hacking incidents had major impact. They call for more research on cyber-physical security. Fears about the use of quantum computing to break current cryptosystems make matters worse. While the quantum threat motivated the creation of new disciplines to handle the issue, such as post-quantum cryptography, other fields have overlooked the existence of quantum-enabled adversaries. This is the case of cyber-physical defense research, a distinct but complementary discipline to cyber-physical protection. Cyber-physical defense refers to the capability to detect and react in response to cyber-physical attacks. Concretely, it involves the integration of mechanisms to identify adverse events and prepare response plans, during and after incidents occur. In this paper, we make the assumption that the eventually available quantum computer will provide an advantage to adversaries against defenders, unless they also adopt this technology. We envision the necessity for a paradigm shift, where an increase of adversarial resources because of quantum supremacy does not translate into higher likelihood of disruptions. Consistently with current system design practices in other areas, such as the use of artificial intelligence for the reinforcement of attack detection tools, we outline a vision for next generation cyber-physical defense layers leveraging ideas from quantum computing and machine learning. Through an example, we show that defenders of NCSs can learn and improve their strategies to anticipate and recover from attacks.

Advances in emerging technologies have accelerated digital transformation with the pervasive digitalization of the economy and society, driving innovations such as smart cities, industry 4.0 and FinTech. Unlike digitization, digitalization is a transformation to improve processes by leveraging digital technologies and digitized data. The cyberspace has evolved from a hardware internetworking infrastructure to the notion of a virtual environment, transforming how people, business and government interact and operate. Through this transformation, lots of personal data are captured which individuals have no ownership or control over, threatening their privacy. It is therefore necessary for the data owners to have control over the ownership, custody and utilization of their data and to protect one's digital assets and identity through proper data governance, cybersecurity control and privacy protection. This results in the notions of data sovereignty and digital sovereignty - two conceptually related terms, but different focuses. This paper first explains these two concepts in terms of their guiding principles, laws and regulations requirements, and analyse and discuss the technical challenges of implementing these requirements. Next, to understand the emerging trend shift in digital sovereignty towards individuals to take complete control of the security and privacy of their own digital assets, this paper conducts a systematic study and analysis of Self-Sovereign Identity, and discuss existing solutions and point out that an efficient key management system, scalability and interoperability of the solutions and well established standards are some of its challenges and open problems to wide deployments.

Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, 2D random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.

Redactable signature allows anyone to remove parts of a signed message without invalidating the signature. The need to prove the validity of digital documents issued by governments is increasing. When governments disclose documents, they must remove private information concerning individuals. Redactable signature is useful for such a situation. However, in most redactable signature schemes, to remove parts of the signed message, we need pieces of information for each part we want to remove. If a signed message consists of l elements, the number of elements in an original signature is at least linear in l. As far as we know, in some redactable signature schemes, the number of elements in an original signature is constant, regardless of the number of elements in a message to be signed. However, these constructions have drawbacks in that the use of the random oracle model or generic group model. In this paper, we construct an efficient redactable signature to overcome these drawbacks. Our redactable signature is obtained by combining set-commitment proposed in the recent work by Fuchsbauer et al. (JoC 2019) and digital signatures.

In this expository article we present an overview of the current state-of-the-art in post-quantum group-based cryptography. We describe several families of groups that have been proposed as platforms, with special emphasis in polycyclic groups and graph groups, dealing in particular with their algorithmic properties and cryptographic applications. We then, describe some applications of combinatorial algebra in fully homomorphic encryption. In the end we discussing several open problems in this direction.

We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with the $p$-faces of the $n$-cube (for $n>p$) and stabilizer constraints with faces of dimension $(p\pm1)$. The quantum code obtained by identifying antipodal faces of the resulting complex encodes one logical qubit into $N = 2^{n-p-1} \tbinom{n}{p}$ physical qubits and displays local testability with a soundness of $\Omega(1/\log(N))$ beating the current state-of-the-art of $1/\log^{2}(N)$ due to Hastings. We exploit this local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less than the minimum distance, up to polylog factors. We then extend this code family by considering the quotient of the $n$-cube by arbitrary linear classical codes of length $n$. We establish the parameters of these generalized hemicubic codes. Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the ordinary $n$-cube, then the generalized hemicubic codes could yield quantum locally testable codes of length not exceeding an exponential or even polynomial function of the code dimension.

Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of computationally challenging tasks more efficiently than their classical counterparts. The architecture of software-intensive systems can empower architects who can leverage architecture-centric processes, practices, description languages, etc., to model, develop, and evolve quantum computing software (quantum software for short) at higher abstraction levels. We conducted a systematic literature review (SLR) to investigate (i) architectural process, (ii) modeling notations, (iii) architecture design patterns, (iv) tool support, and (iv) challenging factors for quantum software architecture. Results of the SLR indicate that quantum software represents a new genre of software-intensive systems; however, existing processes and notations can be tailored to derive the architecting activities and develop modeling languages for quantum software. Quantum bits (Qubits) mapped to Quantum gates (Qugates) can be represented as architectural components and connectors that implement quantum software. Tool-chains can incorporate reusable knowledge and human roles (e.g., quantum domain engineers, quantum code developers) to automate and customize the architectural process. Results of this SLR can facilitate researchers and practitioners to develop new hypotheses to be tested, derive reference architectures, and leverage architecture-centric principles and practices to engineer emerging and next generations of quantum software.

Understanding quantum channels and the strange behavior of their capacities is a key objective of quantum information theory. Here we study a remarkably simple, low-dimensional, single-parameter family of quantum channels with exotic quantum information-theoretic features. As the simplest example from this family, we focus on a qutrit-to-qutrit channel that is intuitively obtained by hybridizing together a simple degradable channel and a completely useless qubit channel. Such hybridizing makes this channel's capacities behave in a variety of interesting ways. For instance, the private and classical capacity of this channel coincide and can be explicitly calculated, even though the channel does not belong to any class for which the underlying information quantities are known to be additive. Moreover, the quantum capacity of the channel can be computed explicitly, given a clear and compelling conjecture is true. This "spin alignment conjecture", which may be of independent interest, is proved in certain special cases and additional numerical evidence for its validity is provided. Finally, we generalize the qutrit channel in two ways, and the resulting channels and their capacities display similarly rich behavior. In a companion paper, we further show that the qutrit channel demonstrates superadditivity when transmitting quantum information jointly with a variety of assisting channels, in a manner unknown before.

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

北京阿比特科技有限公司