Given the increasing realism of social interactions online, social media offers an unprecedented avenue to evaluate real-life moral scenarios. We examine posts from Reddit, where authors and commenters share their moral judgments on who is blameworthy. We employ computational techniques to investigate factors influencing moral judgments, including (1) events activating social commonsense and (2) linguistic signals. To this end, we focus on excerpt-which we term moral sparks-from original posts that commenters include to indicate what motivates their moral judgments. By examining over 24,672 posts and 175,988 comments, we find that event-related negative personal traits (e.g., immature and rude) attract attention and stimulate blame, implying a dependent relationship between moral sparks and blameworthiness. Moreover, language that impacts commenters' cognitive processes to depict events and characters enhances the probability of an excerpt become a moral spark, while factual and concrete descriptions tend to inhibit this effect.
With the rapid progress in virtual reality (VR) technology, the scope of VR applications has greatly expanded across various domains. However, the superiority of VR training over traditional methods and its impact on learning efficacy are still uncertain. To investigate whether VR training is more effective than traditional methods, we designed virtual training systems for mechanical assembly on both VR and desktop platforms, subsequently conducting pre-test and post-test experiments. A cohort of 53 students, all enrolled in engineering drawing course without prior knowledge distinctions, was randomly divided into three groups: physical training, desktop virtual training, and immersive VR training. Our investigation utilized analysis of covariance (ANCOVA) to examine the differences in post-test scores among the three groups while controlling for pre-test scores. The group that received VR training showed the highest scores on the post-test. Another facet of our study delved into the presence of the virtual system. We developed a specialized scale to assess this aspect for our research objectives. Our findings indicate that VR training can enhance the sense of presence, particularly in terms of sensory factors and realism factors. Moreover, correlation analysis uncovers connections between the various dimensions of presence. This study confirms that using VR training can improve learning efficacy and the presence in the context of mechanical assembly, surpassing traditional training methods. Furthermore, it provides empirical evidence supporting the integration of VR technology in higher education and engineering training. This serves as a reference for the practical application of VR technology in different fields.
News outlets are now more than ever incentivized to provide their audience with slanted news, while the intrinsic homophilic nature of online social media may exacerbate polarized opinions. Here, we propose a new dynamic latent space model for time-varying online audience-duplication networks, which exploits social media content to conduct inference on media bias and polarization of news outlets. Our model contributes to the literature in several directions: 1) we provide a model-embedded data-driven interpretation for the latent leaning of news outlets in terms of media bias; 2) we endow our model with Markov-switching dynamics to capture polarization regimes while maintaining a parsimonious specification; 3) we contribute to the literature on the statistical properties of latent space network models. The proposed model is applied to a set of data on the online activity of national and local news outlets from four European countries in the years 2015 and 2016. We find evidence of a strong positive correlation between our media slant measure and a well-grounded external source of media bias. In addition, we provide insight into the polarization regimes across the four countries considered.
Background: Previous studies suggest that social media use among the youth is correlated with online and offline political participation. There is also a mixed and inconclusive debate on whether more online political participation in the youth increases their offline political participation. Methods: This study uses three models of OLS, two-way fixed effects, and an instrumental variable approach to make causal inferences about social media use, online, and offline political participation of the youth. Findings: The analyses provide evidence of a large effect of casual social media use on online political participation, and no effect or negligible effect on offline political participation and voting behavior. The results from fixed effects and instrumental variable models provide strong evidence of elasticity between online and offline political participation in young individuals. On average, a one percent increase in online political participation increases the offline political activity index by 0.12 percent.
With the rapid development of the internet in the past decade, it has become increasingly important to extract valuable information from vast resources efficiently, which is crucial for establishing a comprehensive digital ecosystem, particularly in the context of research surveys and comprehension. The foundation of these tasks focuses on accurate extraction and deep mining of data from scientific documents, which are essential for building a robust data infrastructure. However, parsing raw data or extracting data from complex scientific documents have been ongoing challenges. Current data extraction methods for scientific documents typically use rule-based (RB) or machine learning (ML) approaches. However, using rule-based methods can incur high coding costs for articles with intricate typesetting. Conversely, relying solely on machine learning methods necessitates annotation work for complex content types within the scientific document, which can be costly. Additionally, few studies have thoroughly defined and explored the hierarchical layout within scientific documents. The lack of a comprehensive definition of the internal structure and elements of the documents indirectly impacts the accuracy of text classification and object recognition tasks. From the perspective of analyzing the standard layout and typesetting used in the specified publication, we propose a new document layout analysis framework called CTBR(Compartment & Text Blocks Refinement). Firstly, we define scientific documents into hierarchical divisions: base domain, compartment, and text blocks. Next, we conduct an in-depth exploration and classification of the meanings of text blocks. Finally, we utilize the results of text block classification to implement object recognition within scientific documents based on rule-based compartment segmentation.
The resilience of internet service is crucial for ensuring consistent communication, facilitating emergency response in digitally-dependent society. Due to empirical data constraints, there has been limited research on internet service disruptions during extreme weather events. To bridge this gap, this study utilizes observational datasets on internet performance to quantitatively assess extent of internet disruption during two recent extreme weather events. Taking Harris County in United States as study region, we jointly analyzed the hazard severity and the associated internet disruptions in two extreme weather events. The results show that hazard events significantly impacted regional internet connectivity. There exists a pronounced temporal synchronicity between magnitude of disruption and hazard severity: as severity of hazards intensifies, internet disruptions correspondingly escalate, and eventually return to baseline levels post-event. Spatial analyses show internet service disruptions can happen even in areas not directly impacted by hazards, demonstrating that repercussions of hazards extend beyond immediate area of impact. This interplay of temporal synchronization and spatial variance underscores complex relationships between hazard severity and Internet disruption. Socio-demographic analysis suggests vulnerable communities, already grappling with myriad challenges, face exacerbated service disruptions during hazard events, emphasizing the need for prioritized disaster mitigation strategiesfor improving the resilience of internet services. To the best of our knowledge, this research is among the first studies to examine the Internet disruptions during hazardous events using a quantitative observational dataset. Insights obtained hold significant implications for city administrators, guiding them towards more resilient and equitable infrastructure planning.
Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.