亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pathological captioning of Whole Slide Images (WSIs), though is essential in computer-aided pathological diagnosis, has rarely been studied due to the limitations in datasets and model training efficacy. In this paper, we propose a new paradigm Subtype-guided Masked Transformer (SGMT) for pathological captioning based on Transformers, which treats a WSI as a sequence of sparse patches and generates an overall caption sentence from the sequence. An accompanying subtype prediction is introduced into SGMT to guide the training process and enhance the captioning accuracy. We also present an Asymmetric Masked Mechansim approach to tackle the large size constraint of pathological image captioning, where the numbers of sequencing patches in SGMT are sampled differently in the training and inferring phases, respectively. Experiments on the PatchGastricADC22 dataset demonstrate that our approach effectively adapts to the task with a transformer-based model and achieves superior performance than traditional RNN-based methods. Our codes are to be made available for further research and development.

相關內容

圖像字幕(Image Captioning),是指從圖像生成(cheng)文本描述(shu)的過(guo)程,主要根據圖像中物體和物體的動作。

The Spiking Neural Network (SNN), as one of the biologically inspired neural network infrastructures, has drawn increasing attention recently. It adopts binary spike activations to transmit information, thus the multiplications of activations and weights can be substituted by additions, which brings high energy efficiency. However, in the paper, we theoretically and experimentally prove that the binary spike activation map cannot carry enough information, thus causing information loss and resulting in accuracy decreasing. To handle the problem, we propose a ternary spike neuron to transmit information. The ternary spike neuron can also enjoy the event-driven and multiplication-free operation advantages of the binary spike neuron but will boost the information capacity. Furthermore, we also embed a trainable factor in the ternary spike neuron to learn the suitable spike amplitude, thus our SNN will adopt different spike amplitudes along layers, which can better suit the phenomenon that the membrane potential distributions are different along layers. To retain the efficiency of the vanilla ternary spike, the trainable ternary spike SNN will be converted to a standard one again via a re-parameterization technique in the inference. Extensive experiments with several popular network structures over static and dynamic datasets show that the ternary spike can consistently outperform state-of-the-art methods. Our code is open-sourced at //github.com/yfguo91/Ternary-Spike.

Recently, the proliferation of highly realistic synthetic images, facilitated through a variety of GANs and Diffusions, has significantly heightened the susceptibility to misuse. While the primary focus of deepfake detection has traditionally centered on the design of detection algorithms, an investigative inquiry into the generator architectures has remained conspicuously absent in recent years. This paper contributes to this lacuna by rethinking the architectures of CNN-based generators, thereby establishing a generalized representation of synthetic artifacts. Our findings illuminate that the up-sampling operator can, beyond frequency-based artifacts, produce generalized forgery artifacts. In particular, the local interdependence among image pixels caused by upsampling operators is significantly demonstrated in synthetic images generated by GAN or diffusion. Building upon this observation, we introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations. A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by \tft{28 distinct generative models}. This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable \tft{12.8\%} improvement over existing methods. The code is available at //github.com/chuangchuangtan/NPR-DeepfakeDetection.

Ultrasound (US) imaging is a vital adjunct to mammography in breast cancer screening and diagnosis, but its reliance on hand-held transducers often lacks repeatability and heavily depends on sonographers' skills. Integrating US systems from different vendors further complicates clinical standards and workflows. This research introduces a co-robotic US platform for repeatable, accurate, and vendor-independent breast US image acquisition. The platform can autonomously perform 3D volume scans or swiftly acquire real-time 2D images of suspicious lesions. Utilizing a Universal Robot UR5 with an RGB camera, a force sensor, and an L7-4 linear array transducer, the system achieves autonomous navigation, motion control, and image acquisition. The calibrations, including camera-mammogram, robot-camera, and robot-US, were rigorously conducted and validated. Governed by a PID force control, the robot-held transducer maintains a constant contact force with the compression plate during the scan for safety and patient comfort. The framework was validated on a lesion-mimicking phantom. Our results indicate that the developed co-robotic US platform promises to enhance the precision and repeatability of breast cancer screening and diagnosis. Additionally, the platform offers straightforward integration into most mammographic devices to ensure vendor-independence.

The goal of Unsupervised Reinforcement Learning (URL) is to find a reward-agnostic prior policy on a task domain, such that the sample-efficiency on supervised downstream tasks is improved. Although agents initialized with such a prior policy can achieve a significantly higher reward with fewer samples when finetuned on the downstream task, it is still an open question how an optimal pretrained prior policy can be achieved in practice. In this work, we present POLTER (Policy Trajectory Ensemble Regularization) - a general method to regularize the pretraining that can be applied to any URL algorithm and is especially useful on data- and knowledge-based URL algorithms. It utilizes an ensemble of policies that are discovered during pretraining and moves the policy of the URL algorithm closer to its optimal prior. Our method is based on a theoretical framework, and we analyze its practical effects on a white-box benchmark, allowing us to study POLTER with full control. In our main experiments, we evaluate POLTER on the Unsupervised Reinforcement Learning Benchmark (URLB), which consists of 12 tasks in 3 domains. We demonstrate the generality of our approach by improving the performance of a diverse set of data- and knowledge-based URL algorithms by 19% on average and up to 40% in the best case. Under a fair comparison with tuned baselines and tuned POLTER, we establish a new state-of-the-art for model-free methods on the URLB.

Cognitive diagnosis is a crucial task in computational education, aimed at evaluating students' proficiency levels across various knowledge concepts through exercises. Current models, however, primarily rely on students' answered exercises, neglecting the complex and rich information contained in un-interacted exercises. While recent research has attempted to leverage the data within un-interacted exercises linked to interacted knowledge concepts, aiming to address the long-tail issue, these studies fail to fully explore the informative, un-interacted exercises related to broader knowledge concepts. This oversight results in diminished performance when these models are applied to comprehensive datasets. In response to this gap, we present the Collaborative-aware Mixed Exercise Sampling (CMES) framework, which can effectively exploit the information present in un-interacted exercises linked to un-interacted knowledge concepts. Specifically, we introduce a novel universal sampling module where the training samples comprise not merely raw data slices, but enhanced samples generated by combining weight-enhanced attention mixture techniques. Given the necessity of real response labels in cognitive diagnosis, we also propose a ranking-based pseudo feedback module to regulate students' responses on generated exercises. The versatility of the CMES framework bolsters existing models and improves their adaptability. Finally, we demonstrate the effectiveness and interpretability of our framework through comprehensive experiments on real-world datasets.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司