亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish Bernstein's inequalities for functions of general (general-state-space and possibly non-reversible) Markov chains. These inequalities achieve sharp variance proxies and encompass the classical Bernstein inequality for independent random variables as special cases. The key analysis lies in bounding the operator norm of a perturbed Markov transition kernel by the exponential of sum of two convex functions. One coincides with what delivers the classical Bernstein inequality, and the other reflects the influence of the Markov dependence. A convex analysis on these two functions then derives our Bernstein inequalities. As applications, we apply our Bernstein inequalities to the Markov chain Monte Carlo integral estimation problem and the robust mean estimation problem with Markov-dependent samples, and achieve tight deviation bounds that previous inequalities can not.

相關內容

Precise situational awareness is required for the safe decision-making of assisted and automated driving (AAD) functions. Panoptic segmentation is a promising perception technique to identify and categorise objects, impending hazards, and driveable space at a pixel level. While segmentation quality is generally associated with the quality of the camera data, a comprehensive understanding and modelling of this relationship are paramount for AAD system designers. Motivated by such a need, this work proposes a unifying pipeline to assess the robustness of panoptic segmentation models for AAD, correlating it with traditional image quality. The first step of the proposed pipeline involves generating degraded camera data that reflects real-world noise factors. To this end, 19 noise factors have been identified and implemented with 3 severity levels. Of these factors, this work proposes novel models for unfavourable light and snow. After applying the degradation models, three state-of-the-art CNN- and vision transformers (ViT)-based panoptic segmentation networks are used to analyse their robustness. The variations of the segmentation performance are then correlated to 8 selected image quality metrics. This research reveals that: 1) certain specific noise factors produce the highest impact on panoptic segmentation, i.e. droplets on lens and Gaussian noise; 2) the ViT-based panoptic segmentation backbones show better robustness to the considered noise factors; 3) some image quality metrics (i.e. LPIPS and CW-SSIM) correlate strongly with panoptic segmentation performance and therefore they can be used as predictive metrics for network performance.

Passwords remain a widely-used authentication mechanism, despite their well-known security and usability limitations. To improve on this situation, next-generation authentication mechanisms, based on behavioral biometric factors such as eye movement and brainwave have emerged. However, their usability remains relatively under-explored. To fill this gap, we conducted an empirical user study (n=32 participants) to evaluate three brain-based and three eye-based authentication mechanisms, using both qualitative and quantitative methods. Our findings show good overall usability according to the System Usability Scale for both categories of mechanisms, with average SUS scores in the range of 78.6-79.6 and the best mechanisms rated with an "excellent" score. Participants particularly identified brainwave authentication as more secure yet more privacy-invasive and effort-intensive compared to eye movement authentication. However, the significant number of neutral responses indicates participants' need for more detailed information about the security and privacy implications of these authentication methods. Building on the collected evidence, we identify three key areas for improvement: privacy, authentication interface design, and verification time. We offer recommendations for designers and developers to improve the usability and security of next-generation authentication mechanisms.

Abstractive summarization models often generate factually inconsistent content particularly when the parametric knowledge of the model conflicts with the knowledge in the input document. In this paper, we analyze the robustness of fine-tuning based summarization models to the knowledge conflict, which we call factual adaptiveness. We utilize pre-trained language models to construct evaluation sets and find that factual adaptiveness is not strongly correlated with factual consistency on original datasets. Furthermore, we introduce a controllable counterfactual data augmentation method where the degree of knowledge conflict within the augmented data can be adjustable. Our experimental results on two pre-trained language models (PEGASUS and BART) and two fine-tuning datasets (XSum and CNN/DailyMail) demonstrate that our method enhances factual adaptiveness while achieving factual consistency on original datasets on par with the contrastive learning baseline.

This study investigates the concept of the `right to be forgotten' within the context of large language models (LLMs). We explore machine unlearning as a pivotal solution, with a focus on pre-trained models--a notably under-researched area. Our research delineates a comprehensive framework for machine unlearning in pre-trained LLMs, encompassing a critical analysis of seven diverse unlearning methods. Through rigorous evaluation using curated datasets from arXiv, books, and GitHub, we establish a robust benchmark for unlearning performance, demonstrating that these methods are over $10^5$ times more computationally efficient than retraining. Our results show that integrating gradient ascent with gradient descent on in-distribution data improves hyperparameter robustness. We also provide detailed guidelines for efficient hyperparameter tuning in the unlearning process. Our findings advance the discourse on ethical AI practices, offering substantive insights into the mechanics of machine unlearning for pre-trained LLMs and underscoring the potential for responsible AI development.

Table-to-text generation involves generating appropriate textual descriptions given structured tabular data. It has attracted increasing attention in recent years thanks to the popularity of neural network models and the availability of large-scale datasets. A common feature across existing methods is their treatment of the input as a string, i.e., by employing linearization techniques that do not always preserve information in the table, are verbose, and lack space efficiency. We propose to rethink data-to-text generation as a visual recognition task, removing the need for rendering the input in a string format. We present PixT3, a multimodal table-to-text model that overcomes the challenges of linearization and input size limitations encountered by existing models. PixT3 is trained with a new self-supervised learning objective to reinforce table structure awareness and is applicable to open-ended and controlled generation settings. Experiments on the ToTTo and Logic2Text benchmarks show that PixT3 is competitive and, in some settings, superior to generators that operate solely on text.

Self-supervised learning methods based on data augmentations, such as SimCLR, BYOL, or DINO, allow obtaining semantically meaningful representations of image datasets and are widely used prior to supervised fine-tuning. A recent self-supervised learning method, $t$-SimCNE, uses contrastive learning to directly train a 2D representation suitable for visualisation. When applied to natural image datasets, $t$-SimCNE yields 2D visualisations with semantically meaningful clusters. In this work, we used $t$-SimCNE to visualise medical image datasets, including examples from dermatology, histology, and blood microscopy. We found that increasing the set of data augmentations to include arbitrary rotations improved the results in terms of class separability, compared to data augmentations used for natural images. Our 2D representations show medically relevant structures and can be used to aid data exploration and annotation, improving on common approaches for data visualisation.

Optimal solutions of combinatorial optimization problems can be sensitive to changes in the cost of one or more elements. Single and set tolerances measure the largest / smallest possible change such that the current solution remains optimal and other solutions become non-optimal for cost changes in one or more elements, respectively. The current definition only applies to subsets of elements. In this paper, we broaden the definition to all elements, for single tolerances, and to all subsets of elements for set tolerances, while proving that key computational and theoretical properties still apply to the new definitions.

Relation extraction is an efficient way of mining the extraordinary wealth of human knowledge on the Web. Existing methods rely on domain-specific training data or produce noisy outputs. We focus here on extracting targeted relations from semi-structured web pages given only a short description of the relation. We present GraphScholarBERT, an open-domain information extraction method based on a joint graph and language model structure. GraphScholarBERT can generalize to previously unseen domains without additional data or training and produces only clean extraction results matched to the search keyword. Experiments show that GraphScholarBERT can improve extraction F1 scores by as much as 34.8\% compared to previous work in a zero-shot domain and zero-shot website setting.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司