Context: Machine Learning Operations (MLOps) has emerged as a set of practices that combines development, testing, and operations to deploy and maintain machine learning applications. Objective: In this paper, we assess the benefits and limitations of using the MLOps principles in online supervised learning. Method: We conducted two focus group sessions on the benefits and limitations of applying MLOps principles for online machine learning applications with six experienced machine learning developers. Results: The focus group revealed that machine learning developers see many benefits of using MLOps principles but also that these do not apply to all the projects they worked on. According to experts, this investment tends to pay off for larger applications with continuous deployment that require well-prepared automated processes. However, for initial versions of machine learning applications, the effort taken to implement the principles could enlarge the project's scope and increase the time needed to deploy a first version to production. The discussion brought up that most of the benefits are related to avoiding error-prone manual steps, enabling to restore the application to a previous state, and having a robust continuous automated deployment pipeline. Conclusions: It is important to balance the trade-offs of investing time and effort in implementing the MLOps principles considering the scope and needs of the project, favoring such investments for larger applications with continuous model deployment requirements.
Clustering methods must be tailored to the dataset it operates on, as there is no objective or universal definition of ``cluster,'' but nevertheless arbitrariness in the clustering method must be minimized. This paper develops a quantitative ``stability'' method of determining clusters, where stable or persistent clustering signals are used to indicate real structures have been identified in the underlying dataset. This method is based on modulating clustering methods by controlling a parameter -- through a thermodynamic analogy, the modulation parameter is considered ``time'' and the evolving clustering methodologies can be considered a ``heat flow.'' When the information entropy of the heat flow is stable over a wide range of times -- either globally or in the local sense which we define -- we interpret this stability as an indication that essential features of the data have been found, and create clusters on this basis.
Centred Kernel Alignment (CKA) has recently emerged as a popular metric to compare activations from biological and artificial neural networks (ANNs) in order to quantify the alignment between internal representations derived from stimuli sets (e.g. images, text, video) that are presented to both systems. In this paper we highlight issues that the community should take into account if using CKA as an alignment metric with neural data. Neural data are in the low-data high-dimensionality domain, which is one of the cases where (biased) CKA results in high similarity scores even for pairs of random matrices. Using fMRI and MEG data from the THINGS project, we show that if biased CKA is applied to representations of different sizes in the low-data high-dimensionality domain, they are not directly comparable due to biased CKA's sensitivity to differing feature-sample ratios and not stimuli-driven responses. This situation can arise both when comparing a pre-selected area of interest (e.g. ROI) to multiple ANN layers, as well as when determining to which ANN layer multiple regions of interest (ROIs) / sensor groups of different dimensionality are most similar. We show that biased CKA can be artificially driven to its maximum value when using independent random data of different sample-feature ratios. We further show that shuffling sample-feature pairs of real neural data does not drastically alter biased CKA similarity in comparison to unshuffled data, indicating an undesirable lack of sensitivity to stimuli-driven neural responses. Positive alignment of true stimuli-driven responses is only achieved by using debiased CKA. Lastly, we report findings that suggest biased CKA is sensitive to the inherent structure of neural data, only differing from shuffled data when debiased CKA detects stimuli-driven alignment.
As distributed learning applications such as Federated Learning, the Internet of Things (IoT), and Edge Computing grow, it is critical to address the shortcomings of such technologies from a theoretical perspective. As an abstraction, we consider decentralized learning over a network of communicating clients or nodes and tackle two major challenges: data heterogeneity and adversarial robustness. We propose a decentralized minimax optimization method that employs two important modules: local updates and gradient tracking. Minimax optimization is the key tool to enable adversarial training for ensuring robustness. Having local updates is essential in Federated Learning (FL) applications to mitigate the communication bottleneck, and utilizing gradient tracking is essential to proving convergence in the case of data heterogeneity. We analyze the performance of the proposed algorithm, Dec-FedTrack, in the case of nonconvex-strongly concave minimax optimization, and prove that it converges a stationary point. We also conduct numerical experiments to support our theoretical findings.
Retrieval-Augmented Generation (RAG) has recently emerged as a method to extend beyond the pre-trained knowledge of Large Language Models by augmenting the original prompt with relevant passages or documents retrieved by an Information Retrieval (IR) system. RAG has become increasingly important for Generative AI solutions, especially in enterprise settings or in any domain in which knowledge is constantly refreshed and cannot be memorized in the LLM. We argue here that the retrieval component of RAG systems, be it dense or sparse, deserves increased attention from the research community, and accordingly, we conduct the first comprehensive and systematic examination of the retrieval strategy of RAG systems. We focus, in particular, on the type of passages IR systems within a RAG solution should retrieve. Our analysis considers multiple factors, such as the relevance of the passages included in the prompt context, their position, and their number. One counter-intuitive finding of this work is that the retriever's highest-scoring documents that are not directly relevant to the query (e.g., do not contain the answer) negatively impact the effectiveness of the LLM. Even more surprising, we discovered that adding random documents in the prompt improves the LLM accuracy by up to 35%. These results highlight the need to investigate the appropriate strategies when integrating retrieval with LLMs, thereby laying the groundwork for future research in this area.
We propose a simple imperative programming language, ERC, that features arbitrary real numbers as primitive data type, exactly. Equipped with a denotational semantics, ERC provides a formal programming language-theoretic foundation to the algorithmic processing of real numbers. In order to capture multi-valuedness, which is well-known to be essential to real number computation, we use a Plotkin powerdomain and make our programming language semantics computable and complete: all and only real functions computable in computable analysis can be realized in ERC. The base programming language supports real arithmetic as well as implicit limits; expansions support additional primitive operations (such as a user-defined exponential function). By restricting integers to Presburger arithmetic and real coercion to the 'precision' embedding $\mathbb{Z}\ni p\mapsto 2^p\in\mathbb{R}$, we arrive at a first-order theory which we prove to be decidable and model-complete. Based on said logic as specification language for preconditions and postconditions, we extend Hoare logic to a sound (w.r.t. the denotational semantics) and expressive system for deriving correct total correctness predicates. Various examples demonstrate the practicality and convenience of our language and proof rules.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.