亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Assouad-Nagata dimension addresses both large and small scale behaviors of metric spaces and is a refinement of Gromov's asymptotic dimension. A metric space $M$ is a minor-closed metric if there exists an (edge-)weighted graph $G$ satisfying a fixed minor-closed property such that the underlying space of $M$ is the vertex-set of $G$, and the metric of $M$ is the distance function in $G$. Minor-closed metrics naturally arise when removing redundant edges of the underlying graphs by using edge-deletion and edge-contraction. In this paper, we determine the Assouad-Nagata dimension of every minor-closed metric. Our main theorem simultaneously generalizes known results about the asymptotic dimension of $H$-minor free unweighted graphs and about the Assouad-Nagata dimension of complete Riemannian surfaces with finite Euler genus.

相關內容

The Lippmann--Schwinger--Lanczos (LSL) algorithm has recently been shown to provide an efficient tool for imaging and direct inversion of synthetic aperture radar data in multi-scattering environments [17], where the data set is limited to the monostatic, a.k.a. single input/single output (SISO) measurements. The approach is based on constructing data-driven estimates of internal fields via a reduced-order model (ROM) framework and then plugging them into the Lippmann-Schwinger integral equation. However, the approximations of the internal solutions may have more error due to missing the off diagonal elements of the multiple input/multiple output (MIMO) matrix valued transfer function. This, in turn, may result in multiple echoes in the image. Here we present a ROM-based data completion algorithm to mitigate this problem. First, we apply the LSL algorithm to the SISO data as in [17] to obtain approximate reconstructions as well as the estimate of internal field. Next, we use these estimates to calculate a forward Lippmann-Schwinger integral to populate the missing off-diagonal data (the lifting step). Finally, to update the reconstructions, we solve the Lippmann-Schwinger equation using the original SISO data, where the internal fields are constructed from the lifted MIMO data. The steps of obtaining the approximate reconstructions and internal fields and populating the missing MIMO data entries can be repeated for complex models to improve the images even further. Efficiency of the proposed approach is demonstrated on 2D and 2.5D numerical examples, where we see reconstructions are improved substantially.

Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.

Flexoelectricity - the generation of electric field in response to a strain gradient - is a universal electromechanical coupling, dominant only at small scales due to its requirement of high strain gradients. This phenomenon is governed by a set of coupled fourth-order partial differential equations (PDEs), which require $C^1$ continuity of the basis in finite element methods for the numerical solution. While Isogeometric analysis (IGA) has been proven to meet this continuity requirement due to its higher-order B-spline basis functions, it is limited to simple geometries that can be discretized with a single IGA patch. For the domains, e.g., architected materials, requiring more than one patch for discretization IGA faces the challenge of $C^0$ continuity across the patch boundaries. Here we present a discontinuous Galerkin method-based isogeometric analysis framework, capable of solving fourth-order PDEs of flexoelectricity in the domain of truss-based architected materials. An interior penalty-based stabilization is implemented to ensure the stability of the solution. The present formulation is advantageous over the analogous finite element methods since it only requires the computation of interior boundary contributions on the boundaries of patches. As each strut can be modeled with only two trapezoid patches, the number of $C^0$ continuous boundaries is largely reduced. Further, we consider four unique unit cells to construct the truss lattices and analyze their flexoelectric response. The truss lattices show a higher magnitude of flexoelectricity compared to the solid beam, as well as retain this superior electromechanical response with the increasing size of the structure. These results indicate the potential of architected materials to scale up the flexoelectricity to larger scales, towards achieving universal electromechanical response in meso/macro scale dielectric materials.

Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $ n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.

Nowadays, most of the hyperspectral image (HSI) fusion experiments are based on simulated datasets to compare different fusion methods. However, most of the spectral response functions and spatial downsampling functions used to create the simulated datasets are not entirely accurate, resulting in deviations in spatial and spectral features between the generated images for fusion and the real images for fusion. This reduces the credibility of the fusion algorithm, causing unfairness in the comparison between different algorithms and hindering the development of the field of hyperspectral image fusion. Therefore, we release a real HSI/MSI/PAN image dataset to promote the development of the field of hyperspectral image fusion. These three images are spatially registered, meaning fusion can be performed between HSI and MSI, HSI and PAN image, MSI and PAN image, as well as among HSI, MSI, and PAN image. This real dataset could be available at //aistudio.baidu.com/datasetdetail/281612. The related code to process the data could be available at //github.com/rs-lsl/CSSNet.

This work studies the parameter-dependent diffusion equation in a two-dimensional domain consisting of locally mirror symmetric layers. It is assumed that the diffusion coefficient is a constant in each layer. The goal is to find approximate parameter-to-solution maps that have a small number of terms. It is shown that in the case of two layers one can find a solution formula consisting of three terms with explicit dependencies on the diffusion coefficient. The formula is based on decomposing the solution into orthogonal parts related to both of the layers and the interface between them. This formula is then expanded to an approximate one for the multi-layer case. We give an analytical formula for square layers and use the finite element formulation for more general layers. The results are illustrated with numerical examples and have applications for reduced basis methods by analyzing the Kolmogorov n-width.

Singly-TASE operators for the numerical solution of stiff differential equations were proposed by Calvo et al. in J.Sci. Comput. 2023 to reduce the computational cost of Runge-Kutta-TASE (RKTASE) methods when the involved linear systems are solved by some $LU$ factorization. In this paper we propose a modification of these methods to improve the efficiency by considering different TASE operators for each stage of the Runge-Kutta. We prove that the resulting RKTASE methods are equivalent to $W$-methods (Steihaug and Wolfbrandt, Mathematics of Computation,1979) and this allows us to obtain the order conditions of the proposed Modified Singly-RKTASE methods (MSRKTASE) through the theory developed for the $W$-methods. We construct new MSRKTASE methods of order two and three and demonstrate their effectiveness through numerical experiments on both linear and nonlinear stiff systems. The results show that the MSRKTASE schemes significantly enhance efficiency and accuracy compared to previous Singly-RKTASE schemes.

A key characteristic of the anomalous sub-solution equation is that the solution exhibits algebraic decay rate over long time intervals, which is often refered to the Mittag-Leffler type stability. For a class of power nonlinear sub-diffusion models with variable coefficients, we prove that their solutions have Mittag-Leffler stability when the source functions satisfy natural decay assumptions. That is the solutions have the decay rate $\|u(t)\|_{L^{s}(\Omega)}=O\left( t^{-(\alpha+\beta)/\gamma} \right)$ as $t\rightarrow\infty$, where $\alpha$, $\gamma$ are positive constants, $\beta\in(-\alpha,\infty)$ and $s\in (1,\infty)$. Then we develop the structure preserving algorithm for this type of model. For the complete monotonicity-preserving ($\mathcal{CM}$-preserving) schemes developed by Li and Wang (Commun. Math. Sci., 19(5):1301-1336, 2021), we prove that they satisfy the discrete comparison principle for time fractional differential equations with variable coefficients. Then, by carefully constructing the fine the discrete supsolution and subsolution, we obtain the long time optimal decay rate of the numerical solution $\|u_{n}\|_{L^{s}(\Omega)}=O\left( t_n^{-(\alpha+\beta)/\gamma} \right)$ as $t_{n}\rightarrow\infty$, which is fully agree with the theoretical solution. Finally, we validated the analysis results through numerical experiments.

We propose ParaPIF, a parareal based time parallelization scheme for the particle-in-Fourier (PIF) discretization of the Vlasov-Poisson system used in kinetic plasma simulations. Our coarse propagators are based on the coarsening of the numerical discretization scheme combined with, if possible, temporal coarsening rather than coarsening of particles and/or Fourier modes, which are not possible or effective for PIF schemes. Specifically, we use PIF with a coarse tolerance for nonuniform FFTs or even the standard particle-in-cell schemes as coarse propagators for the ParaPIF algorithm. We state and prove the convergence of the algorithm and verify the results numerically with Landau damping, two-stream instability, and Penning trap test cases in 3D-3V. We also implement the space-time parallelization of the PIF schemes in the open-source, performance-portable library IPPL and conduct scaling studies up to 1536 A100 GPUs on the JUWELS booster supercomputer. The space-time parallelization utilizing the ParaPIF algorithm for the time parallelization provides up to $4-6$ times speedup compared to spatial parallelization alone and achieves a push rate of around 1 billion particles per second for the benchmark plasma mini-apps considered.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司