Addressing trust concerns in Smart Home (SH) systems is imperative due to the limited study on preservation approaches that focus on analyzing and evaluating privacy threats for effective risk management. While most research focuses primarily on user privacy, device data privacy, especially identity privacy, is almost neglected, which can significantly impact overall user privacy within the SH system. To this end, our study incorporates privacy engineering (PE) principles in the SH system that consider user and device data privacy. We start with a comprehensive reference model for a typical SH system. Based on the initial stage of LINDDUN PRO for the PE framework, we present a data flow diagram (DFD) based on a typical SH reference model to better understand SH system operations. To identify potential areas of privacy threat and perform a privacy threat analysis (PTA), we employ the LINDDUN PRO threat model. Then, a privacy impact assessment (PIA) was carried out to implement privacy risk management by prioritizing privacy threats based on their likelihood of occurrence and potential consequences. Finally, we suggest possible privacy enhancement techniques (PETs) that can mitigate some of these threats. The study aims to elucidate the main threats to privacy, associated risks, and effective prioritization of privacy control in SH systems. The outcomes of this study are expected to benefit SH stakeholders, including vendors, cloud providers, users, researchers, and regulatory bodies in the SH systems domain.
The burgeoning integration of artificial intelligence (AI) into human society brings forth significant implications for societal governance and safety. While considerable strides have been made in addressing AI alignment challenges, existing methodologies primarily focus on technical facets, often neglecting the intricate sociotechnical nature of AI systems, which can lead to a misalignment between the development and deployment contexts. To this end, we posit a new problem worth exploring: Incentive Compatibility Sociotechnical Alignment Problem (ICSAP). We hope this can call for more researchers to explore how to leverage the principles of Incentive Compatibility (IC) from game theory to bridge the gap between technical and societal components to maintain AI consensus with human societies in different contexts. We further discuss three classical game problems for achieving IC: mechanism design, contract theory, and Bayesian persuasion, in addressing the perspectives, potentials, and challenges of solving ICSAP, and provide preliminary implementation conceptions.
Gait recognition stands as one of the most pivotal remote identification technologies and progressively expands across research and industrial communities. However, existing gait recognition methods heavily rely on task-specific upstream driven by supervised learning to provide explicit gait representations, which inevitably introduce expensive annotation costs and potentially cause cumulative errors. Escaping from this trend, this work explores effective gait representations based on the all-purpose knowledge produced by task-agnostic Large Vision Models (LVMs) and proposes a simple yet efficient gait framework, termed BigGait. Specifically, the Gait Representation Extractor (GRE) in BigGait effectively transforms all-purpose knowledge into implicit gait features in an unsupervised manner, drawing from design principles of established gait representation construction approaches. Experimental results on CCPG, CAISA-B* and SUSTech1K indicate that BigGait significantly outperforms the previous methods in both self-domain and cross-domain tasks in most cases, and provides a more practical paradigm for learning the next-generation gait representation. Eventually, we delve into prospective challenges and promising directions in LVMs-based gait recognition, aiming to inspire future work in this emerging topic. The source code will be available at //github.com/ShiqiYu/OpenGait.
Processing-using-DRAM (PuD) is an emerging paradigm that leverages the analog operational properties of DRAM circuitry to enable massively parallel in-DRAM computation. PuD has the potential to significantly reduce or eliminate costly data movement between processing elements and main memory. Prior works experimentally demonstrate three-input MAJ (i.e., MAJ3) and two-input AND and OR operations in commercial off-the-shelf (COTS) DRAM chips. Yet, demonstrations on COTS DRAM chips do not provide a functionally complete set of operations (e.g., NAND or AND and NOT). We experimentally demonstrate that COTS DRAM chips are capable of performing 1) functionally-complete Boolean operations: NOT, NAND, and NOR and 2) many-input (i.e., more than two-input) AND and OR operations. We present an extensive characterization of new bulk bitwise operations in 256 off-the-shelf modern DDR4 DRAM chips. We evaluate the reliability of these operations using a metric called success rate: the fraction of correctly performed bitwise operations. Among our 19 new observations, we highlight four major results. First, we can perform the NOT operation on COTS DRAM chips with a 98.37% success rate on average. Second, we can perform up to 16-input NAND, NOR, AND, and OR operations on COTS DRAM chips with high reliability (e.g., 16-input NAND, NOR, AND, and OR with an average success rate of 94.94%, 95.87%, 94.94%, and 95.85%, respectively). Third, data pattern only slightly affects bitwise operations. Our results show that executing NAND, NOR, AND, and OR operations with random data patterns decreases the success rate compared to all logic-1/logic-0 patterns by 1.39%, 1.97%, 1.43%, and 1.98%, respectively. Fourth, bitwise operations are highly resilient to temperature changes, with small success rate fluctuations of at most 1.66% among all the tested operations when the temperature is increased from 50C to 95C.
Despite achieving rapid developments and with widespread applications, Large Vision-Language Models (LVLMs) confront a serious challenge of being prone to generating hallucinations. An over-reliance on linguistic priors has been identified as a key factor leading to these hallucinations. In this paper, we propose to alleviate this problem by introducing a novel image-biased decoding (IBD) technique. Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM, thereby amplifying the correct information highly correlated with image content while mitigating the hallucinatory errors caused by excessive dependence on text. We further conduct a comprehensive statistical analysis to validate the reliability of our method, and design an adaptive adjustment strategy to achieve robust and flexible handling under varying conditions. Experimental results across multiple evaluation metrics verify that our method, despite not requiring additional training data and only with a minimal increase in model parameters, can significantly reduce hallucinations in LVLMs and enhance the truthfulness of the generated response.
Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge.
Diffusion models have recently gained significant attention in both academia and industry due to their impressive generative performance in terms of both sampling quality and distribution coverage. Accordingly, proposals are made for sharing pre-trained diffusion models across different organizations, as a way of improving data utilization while enhancing privacy protection by avoiding sharing private data directly. However, the potential risks associated with such an approach have not been comprehensively examined. In this paper, we take an adversarial perspective to investigate the potential privacy and fairness risks associated with the sharing of diffusion models. Specifically, we investigate the circumstances in which one party (the sharer) trains a diffusion model using private data and provides another party (the receiver) black-box access to the pre-trained model for downstream tasks. We demonstrate that the sharer can execute fairness poisoning attacks to undermine the receiver's downstream models by manipulating the training data distribution of the diffusion model. Meanwhile, the receiver can perform property inference attacks to reveal the distribution of sensitive features in the sharer's dataset. Our experiments conducted on real-world datasets demonstrate remarkable attack performance on different types of diffusion models, which highlights the critical importance of robust data auditing and privacy protection protocols in pertinent applications.
Prior research in representation engineering has revealed that LLMs encode concepts within their representation spaces, predominantly centered around English. In this study, we extend this philosophy to a multilingual scenario, delving into multilingual human value concepts in LLMs. Through our comprehensive exploration covering 7 types of human values, 16 languages and 3 LLM series with distinct multilinguality, we empirically substantiate the existence of multilingual human values in LLMs. Further cross-lingual analysis on these concepts discloses 3 traits arising from language resource disparities: cross-lingual inconsistency, distorted linguistic relationships, and unidirectional cross-lingual transfer between high- and low-resource languages, all in terms of human value concepts. Additionally, we validate the feasibility of cross-lingual control over value alignment capabilities of LLMs, leveraging the dominant language as a source language. Drawing from our findings on multilingual value alignment, we prudently provide suggestions on the composition of multilingual data for LLMs pre-training: including a limited number of dominant languages for cross-lingual alignment transfer while avoiding their excessive prevalence, and keeping a balanced distribution of non-dominant languages. We aspire that our findings would contribute to enhancing the safety and utility of multilingual AI.
Recent developments in Distributed Ledger Technology (DLT), including Blockchain offer new opportunities in the manufacturing domain, by providing mechanisms to automate trust services (digital identity, trusted interactions, and auditable transactions) and when combined with other advanced digital technologies (e.g. machine learning) can provide a secure backbone for trusted data flows between independent entities. This paper presents an DLT-based architectural pattern and technology solution known as SmartQC that aims to provide an extensible and flexible approach to integrating DLT technology into existing workflows and processes. SmartQC offers an opportunity to make processes more time efficient, reliable, and robust by providing two key features i) data integrity through immutable ledgers and ii) automation of business workflows leveraging smart contracts. The paper will present the system architecture, extensible data model and the application of SmartQC in the context of example smart manufacturing applications.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.