We present a Hermite interpolation based partial differential equation solver for Hamilton-Jacobi equations. Many Hamilton-Jacobi equations have a nonlinear dependency on the gradient, which gives rise to discontinuities in the derivatives of the solution, resulting in kinks. We built our solver with two goals in mind: 1) high order accuracy in smooth regions and 2) sharp resolution of kinks. To achieve this, we use Hermite interpolation with a smoothness sensor. The degrees-of freedom of Hermite methods are tensor-product Taylor polynomials of degree $m$ in each coordinate direction. The method uses $(m+1)^d$ degrees of freedom per node in $d$-dimensions and achieves an order of accuracy $(2m+1)$ when the solution is smooth. To obtain sharp resolution of kinks, we sense the smoothness of the solution on each cell at each timestep. If the solution is smooth, we march the interpolant forward in time with no modifications. When our method encounters a cell over which the solution is not smooth, it introduces artificial viscosity locally while proceeding normally in smooth regions. We show through numerical experiments that the solver sharply captures kinks once the solution losses continuity in the derivative while achieving $2m+1$ order accuracy in smooth regions.
Approximate Bayesian computation (ABC) is a popular likelihood-free inference method for models with intractable likelihood functions. As ABC methods usually rely on comparing summary statistics of observed and simulated data, the choice of the statistics is crucial. This choice involves a trade-off between loss of information and dimensionality reduction, and is often determined based on domain knowledge. However, handcrafting and selecting suitable statistics is a laborious task involving multiple trial-and-error steps. In this work, we introduce an active learning method for ABC statistics selection which reduces the domain expert's work considerably. By involving the experts, we are able to handle misspecified models, unlike the existing dimension reduction methods. Moreover, empirical results show better posterior estimates than with existing methods, when the simulation budget is limited.
Learning mapping between two function spaces has attracted considerable research attention. However, learning the solution operator of partial differential equations (PDEs) remains a challenge in scientific computing. Therefore, in this study, we propose a novel pseudo-differential integral operator (PDIO) inspired by a pseudo-differential operator, which is a generalization of a differential operator and characterized by a certain symbol. We parameterize the symbol by using a neural network and show that the neural-network-based symbol is contained in a smooth symbol class. Subsequently, we prove that the PDIO is a bounded linear operator, and thus is continuous in the Sobolev space. We combine the PDIO with the neural operator to develop a pseudo-differential neural operator (PDNO) to learn the nonlinear solution operator of PDEs. We experimentally validate the effectiveness of the proposed model by using Burgers' equation, Darcy flow, and the Navier-Stokes equation. The results reveal that the proposed PDNO outperforms the existing neural operator approaches in most experiments.
Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.
High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations based on convex limiting. The key ingredient in the limiting procedure is a low order positivity-preserving discretization based on graph viscosity terms. The proposed limiting strategy is both positivity preserving and discretely entropy-stable for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.
This paper addresses the problem of determining all optimal integer solutions of a linear integer network flow problem, which we call the all optimal integer flow (AOF) problem. We derive an O(F (m + n) + mn + M ) time algorithm to determine all F many optimal integer flows in a directed network with n nodes and m arcs, where M is the best time needed to find one minimum cost flow. We remark that stopping Hamacher's well-known method for the determination of the K best integer flows at the first sub-optimal flow results in an algorithm with a running time of O(F m(n log n + m) + M ) for solving the AOF problem. Our improvement is essentially made possible by replacing the shortest path sub-problem with a more efficient way to determine a so called proper zero cost cycle using a modified depth-first search technique. As a byproduct, our analysis yields an enhanced algorithm to determine the K best integer flows that runs in O(Kn3 + M ). Besides, we give lower and upper bounds for the number of all optimal integer and feasible integer solutions. Our bounds are based on the fact that any optimal solution can be obtained by an initial optimal tree solution plus a conical combination of incidence vectors of all induced cycles with bounded coefficients.
This paper studies a novel multi-access coded caching (MACC) model in two-dimensional (2D) topology, which is a generalization of the one-dimensional (1D) MACC model proposed by Hachem et al. We formulate a 2D MACC coded caching model, formed by a server containing $N$ files, $K_1\times K_2$ cache-nodes with limited memory $M$ which are placed on a grid with $K_1$ rows and $K_2$ columns, and $K_1\times K_2$ cache-less users such that each user is connected to $L^2$ nearby cache-nodes. More precisely, for each row (or column), every user can access $L$ consecutive cache-nodes, referred to as row (or column) 1D MACC problem in the 2D MACC model. The server is connected to the users through an error-free shared link, while the users can retrieve the cached content of the connected cache-nodes without cost. Our objective is to minimize the worst-case transmission load among all possible users' demands. In this paper, we propose a baseline scheme which directly extends an existing 1D MACC scheme to the 2D model by using a Minimum Distance Separable (MDS) code, and two improved schemes. In the first scheme referred to as grouping scheme, which works when $K_1$ and $K_2$ are divisible by $L$, we partition the cache-nodes and users into $L^2$ groups according to their positions, such that no two users in the same group share any cache-node, and we utilize the seminal shared-link coded caching scheme proposed by Maddah-Ali and Niesen for each group. Subsequently, for any model parameters satisfying $\min\{K_1,K_2\}>L$ we propose the second scheme, referred to as hybrid scheme, consisting in a highly non-trivial way to construct a 2D MACC scheme through a vertical and a horizontal 1D MACC schemes.
We consider a stabilization method for divergence-conforming B-spline discretizations of the incompressible Navier--Stokes problem wherein jumps in high-order normal derivatives of the velocity field are penalized across interior mesh facets. We prove that this method is pressure robust, consistent, and energy stable, and we show how to select the stabilization parameter appearing in the method so that excessive numerical dissipation is avoided in both the cross-wind direction and in the diffusion-dominated regime. We examine the efficacy of the method using a suite of numerical experiments, and we find the method yields optimal $\textbf{L}^2$ and $\textbf{H}^1$ convergence rates for the velocity field, eliminates spurious small-scale structures that pollute Galerkin approximations, and is effective as an Implicit Large Eddy Simulation (ILES) methodology.
This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-B\'{e}nard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e.~medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behaviour. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data.
This paper is devoted to the study of non-homogeneous Bingham flows. We introduce a second-order, divergence-conforming discretization for the Bingham constitutive equations, coupled with a discontinuous Galerkin scheme for the mass density. One of the main challenges when analyzing viscoplastic materials is the treatment of the yield stress. In order to overcome this issue, in this work we propose a local regularization, based on a Huber smoothing step. We also take advantage of the properties of the divergence conforming and discontinuous Galerkin formulations to incorporate upwind discretizations to stabilize the formulation. The stability of the continuous problem and the full-discrete scheme are analyzed. Further, a semismooth Newton method is proposed for solving the obtained fully-discretized system of equations at each time step. Finally, several numerical examples that illustrate the main features of the problem and the properties of the numerical scheme are presented.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.