Autonomous vehicles (AVs) must accurately detect objects from both common and rare classes for safe navigation, motivating the problem of Long-Tailed 3D Object Detection (LT3D). Contemporary LiDAR-based 3D detectors perform poorly on rare classes (e.g., CenterPoint only achieves 5.1 AP on stroller) as it is difficult to recognize objects from sparse LiDAR points alone. RGB images provide visual evidence to help resolve such ambiguities, motivating the study of RGB-LiDAR fusion. In this paper, we delve into a simple late-fusion framework that ensembles independently trained RGB and LiDAR detectors. Unlike recent end-to-end methods which require paired multi-modal training data, our late-fusion approach can easily leverage large-scale uni-modal datasets, significantly improving rare class detection.In particular, we examine three critical components in this late-fusion framework from first principles, including whether to train 2D or 3D RGB detectors, whether to match RGB and LiDAR detections in 3D or the projected 2D image plane, and how to fuse matched detections.Extensive experiments reveal that 2D RGB detectors achieve better recognition accuracy than 3D RGB detectors, matching on the 2D image plane mitigates depth estimation errors, and fusing scores probabilistically with calibration leads to state-of-the-art LT3D performance. Our late-fusion approach achieves 51.4 mAP on the established nuScenes LT3D benchmark, improving over prior work by 5.9 mAP.
Deep Neural Networks (DNNs) based semantic segmentation of the robotic instruments and tissues can enhance the precision of surgical activities in robot-assisted surgery. However, in biological learning, DNNs cannot learn incremental tasks over time and exhibit catastrophic forgetting, which refers to the sharp decline in performance on previously learned tasks after learning a new one. Specifically, when data scarcity is the issue, the model shows a rapid drop in performance on previously learned instruments after learning new data with new instruments. The problem becomes worse when it limits releasing the dataset of the old instruments for the old model due to privacy concerns and the unavailability of the data for the new or updated version of the instruments for the continual learning model. For this purpose, we develop a privacy-preserving synthetic continual semantic segmentation framework by blending and harmonizing (i) open-source old instruments foreground to the synthesized background without revealing real patient data in public and (ii) new instruments foreground to extensively augmented real background. To boost the balanced logit distillation from the old model to the continual learning model, we design overlapping class-aware temperature normalization (CAT) by controlling model learning utility. We also introduce multi-scale shifted-feature distillation (SD) to maintain long and short-range spatial relationships among the semantic objects where conventional short-range spatial features with limited information reduce the power of feature distillation. We demonstrate the effectiveness of our framework on the EndoVis 2017 and 2018 instrument segmentation dataset with a generalized continual learning setting. Code is available at~\url{//github.com/XuMengyaAmy/Synthetic_CAT_SD}.
Analyzing and training 3D body posture models depend heavily on the availability of joint labels that are commonly acquired through laborious manual annotation of body joints or via marker-based joint localization using carefully curated markers and capturing systems. However, such annotations are not always available, especially for people performing unusual activities. In this paper, we propose an algorithm that learns to discover 3D keypoints on human bodies from multiple-view images without any supervision or labels other than the constraints multiple-view geometry provides. To ensure that the discovered 3D keypoints are meaningful, they are re-projected to each view to estimate the person's mask that the model itself has initially estimated without supervision. Our approach discovers more interpretable and accurate 3D keypoints compared to other state-of-the-art unsupervised approaches on Human3.6M and MPI-INF-3DHP benchmark datasets.
With the wide deployment of multimodal learning systems (MMLS) in real-world scenarios, safety concerns have become increasingly prominent. The absence of systematic research into their safety is a significant barrier to progress in this field. To bridge the gap, we present the first taxonomy for MMLS safety, identifying four essential pillars of these concerns. Leveraging this taxonomy, we conduct in-depth reviews for each pillar, highlighting key limitations based on the current state of development. Finally, we pinpoint unique challenges in MMLS safety and provide potential directions for future research.
Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seemlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including non-Euclidean cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications.
A confidence sequence (CS) is a sequence of confidence sets that contains a target parameter of an underlying stochastic process at any time step with high probability. This paper proposes a new approach to constructing CSs for means of bounded multivariate stochastic processes using a general gambling framework, extending the recently established coin toss framework for bounded random processes. The proposed gambling framework provides a general recipe for constructing CSs for categorical and probability-vector-valued observations, as well as for general bounded multidimensional observations through a simple reduction. This paper specifically explores the use of the mixture portfolio, akin to Cover's universal portfolio, in the proposed framework and investigates the properties of the resulting CSs. Simulations demonstrate the tightness of these confidence sequences compared to existing methods. When applied to the sampling without-replacement setting for finite categorical data, it is shown that the resulting CS based on a universal gambling strategy is provably tighter than that of the posterior-prior ratio martingale proposed by Waudby-Smith and Ramdas.
Providing explanations within the recommendation system would boost user satisfaction and foster trust, especially by elaborating on the reasons for selecting recommended items tailored to the user. The predominant approach in this domain revolves around generating text-based explanations, with a notable emphasis on applying large language models (LLMs). However, refining LLMs for explainable recommendations proves impractical due to time constraints and computing resource limitations. As an alternative, the current approach involves training the prompt rather than the LLM. In this study, we developed a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2. We employed a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task. This strategy enables a more effective exploration of users' interests, improving recommendation effectiveness and user satisfaction. Through the experiments, our method achieving 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively, demonstrates superior performance over four SOTA methods in terms of explainability evaluation metric. In addition, we identified that the proposed model is able to ensure stable textual quality on the three public datasets.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.