亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, Ye et al. (Mathematical Programming 2023) designed an algorithm for solving a specific class of bilevel programs with an emphasis on applications related to hyperparameter selection, utilizing the difference of convex algorithm based on the value function approach reformulation. The proposed algorithm is particularly powerful when the lower level problem is fully convex , such as a support vector machine model or a least absolute shrinkage and selection operator model. In this paper, to suit more applications related to machine learning and statistics, we substantially weaken the underlying assumption from lower level full convexity to weak convexity. Accordingly, we propose a new reformulation using Moreau envelope of the lower level problem and demonstrate that this reformulation is a difference of weakly convex program. Subsequently, we develop a sequentially convergent algorithm for solving this difference of weakly convex program. To evaluate the effectiveness of our approach, we conduct numerical experiments on the bilevel hyperparameter selection problem from elastic net, sparse group lasso, and RBF kernel support vector machine models.

相關內容

Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log (\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ result. For exp-concave and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we broaden our work to study dynamic regret minimization and scenarios where the online functions are non-smooth. We establish the first dynamic regret guarantee for the SEA model with convex and smooth functions, which is more favorable than static regret bounds in non-stationary scenarios. Furthermore, to deal with non-smooth and convex functions in the SEA model, we propose novel algorithms building on optimistic OMD with an implicit update, which provably attain static regret and dynamic regret guarantees without smoothness conditions.

Purpose: The purpose of this study was to develop and evaluate rule-based algorithms to enhance the extraction of text data, including retinal nerve fiber layer (RNFL) values and other ganglion cell count (GCC) data, from Zeiss Cirrus optical coherence tomography (OCT) scan reports. Methods: DICOM files that contained encapsulated PDF reports with RNFL or Ganglion Cell in their document titles were identified from a clinical imaging repository at a single academic ophthalmic center. PDF reports were then converted into image files and processed using the PaddleOCR Python package for optical character recognition. Rule-based algorithms were designed and iteratively optimized for improved performance in extracting RNFL and GCC data. Evaluation of the algorithms was conducted through manual review of a set of RNFL and GCC reports. Results: The developed algorithms demonstrated high precision in extracting data from both RNFL and GCC scans. Precision was slightly better for the right eye in RNFL extraction (OD: 0.9803 vs. OS: 0.9046), and for the left eye in GCC extraction (OD: 0.9567 vs. OS: 0.9677). Some values presented more challenges in extraction, particularly clock hours 5 and 6 for RNFL thickness, and signal strength for GCC. Conclusions: A customized optical character recognition algorithm can identify numeric results from optical coherence scan reports with high precision. Automated processing of PDF reports can greatly reduce the time to extract OCT results on a large scale.

Deep Operator Network (DeepONet), a recently introduced deep learning operator network, approximates linear and nonlinear solution operators by taking parametric functions (infinite-dimensional objects) as inputs and mapping them to solution functions in contrast to classical neural networks that need re-training for every new set of parametric inputs. In this work, we have extended the classical formulation of DeepONets by introducing sequential learning models like the gated recurrent unit (GRU) and long short-term memory (LSTM) in the branch network to allow for accurate predictions of the solution contour plots under parametric and time-dependent loading histories. Two example problems, one on transient heat transfer and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the new architectures compared to the benchmark DeepONet model with a feed-forward neural network (FNN) in the branch. Despite being more computationally expensive, the GRU- and LSTM-DeepONets lowered the prediction error by half (0.06\% vs. 0.12\%) compared to FNN-DeepONet in the heat transfer problem, and by 2.5 times (0.85\% vs. 3\%) in the plasticity problem. In all cases, the proposed DeepONets achieved a prediction $R^2$ value of above 0.995, indicating superior accuracy. Results show that once trained, the proposed DeepONets can accurately predict the final full-field solution over the entire domain and are at least two orders of magnitude faster than direct finite element simulations, rendering it an accurate and robust surrogate model for rapid preliminary evaluations.

We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity constraints. While intrinsic methods based on functional maps can produce high-quality correspondences, they work under isometric assumptions and become unreliable for garment deformations which are highly non-isometric. To achieve wrinkle-level as well as texture-level alignment, we present a novel coarse-to-fine two-stage method that leverages intrinsic manifold properties with two neural deformation fields, in the 3D space and the intrinsic space, respectively. The coarse stage performs a 3D fitting, where we leverage intrinsic manifold properties to define a manifold deformation field. The coarse fitting then induces a functional map that produces an alignment of intrinsic embeddings. We further refine the intrinsic alignment with a second neural deformation field for higher accuracy. We evaluate our method with our captured garment dataset, GarmCap. The method achieves accurate wrinkle-level and texture-level alignment and works for difficult garment types such as long coats. Our project page is //jsnln.github.io/iccv2023_intrinsic/index.html.

Developing effective Multi-Agent Systems (MAS) is critical for many applications requiring collaboration and coordination with humans. Despite the rapid advance of Multi-Agent Deep Reinforcement Learning (MADRL) in cooperative MAS, one major challenge is the simultaneous learning and interaction of independent agents in dynamic environments in the presence of stochastic rewards. State-of-the-art MADRL models struggle to perform well in Coordinated Multi-agent Object Transportation Problems (CMOTPs), wherein agents must coordinate with each other and learn from stochastic rewards. In contrast, humans often learn rapidly to adapt to nonstationary environments that require coordination among people. In this paper, motivated by the demonstrated ability of cognitive models based on Instance-Based Learning Theory (IBLT) to capture human decisions in many dynamic decision making tasks, we propose three variants of Multi-Agent IBL models (MAIBL). The idea of these MAIBL algorithms is to combine the cognitive mechanisms of IBLT and the techniques of MADRL models to deal with coordination MAS in stochastic environments from the perspective of independent learners. We demonstrate that the MAIBL models exhibit faster learning and achieve better coordination in a dynamic CMOTP task with various settings of stochastic rewards compared to current MADRL models. We discuss the benefits of integrating cognitive insights into MADRL models.

Deep learning-based surrogate models have been widely applied in geological carbon storage (GCS) problems to accelerate the prediction of reservoir pressure and CO2 plume migration. Large amounts of data from physics-based numerical simulators are required to train a model to accurately predict the complex physical behaviors associated with this process. In practice, the available training data are always limited in large-scale 3D problems due to the high computational cost. Therefore, we propose to use a multi-fidelity Fourier Neural Operator to solve large-scale GCS problems with more affordable multi-fidelity training datasets. The Fourier Neural Operator has a desirable grid-invariant property, which simplifies the transfer learning procedure between datasets with different discretization. We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells. The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs. We further test the generalizability of the multi-fidelity model on a same reservoir model with a finer discretization of 1 million grid cells. This case was made more challenging by employing high-fidelity and low-fidelity datasets generated by different geostatistical models and reservoir simulators. We observe that the multi-fidelity FNO model can predict pressure fields with reasonable accuracy even when the high-fidelity data are extremely limited.

As responsible AI gains importance in machine learning algorithms, properties such as fairness, adversarial robustness, and causality have received considerable attention in recent years. However, despite their individual significance, there remains a critical gap in simultaneously exploring and integrating these properties. In this paper, we propose a novel approach that examines the relationship between individual fairness, adversarial robustness, and structural causal models in heterogeneous data spaces, particularly when dealing with discrete sensitive attributes. We use causal structural models and sensitive attributes to create a fair metric and apply it to measure semantic similarity among individuals. By introducing a novel causal adversarial perturbation and applying adversarial training, we create a new regularizer that combines individual fairness, causality, and robustness in the classifier. Our method is evaluated on both real-world and synthetic datasets, demonstrating its effectiveness in achieving an accurate classifier that simultaneously exhibits fairness, adversarial robustness, and causal awareness.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司