亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Triply periodic minimal surfaces (TPMS) are a class of metamaterials with a variety of applications and well-known primitives. We present a new method for discovering novel microscale TPMS structures with exceptional energy-dissipation capabilities, achieving double the energy absorption of the best existing TPMS primitive structure. Our approach employs a parametric representation, allowing seamless interpolation between structures and representing a rich TPMS design space. We show that simulations are intractable for optimizing microscale hyperelastic structures, and instead propose a sample-efficient computational strategy for rapidly discovering structures with extreme energy dissipation using limited amounts of empirical data from 3D-printed and tested microscale metamaterials. This strategy ensures high-fidelity results but involves time-consuming 3D printing and testing. To address this, we leverage an uncertainty-aware Deep Ensembles model to predict microstructure behaviors and identify which structures to 3D-print and test next. We iteratively refine our model through batch Bayesian optimization, selecting structures for fabrication that maximize exploration of the performance space and exploitation of our energy-dissipation objective. Using our method, we produce the first open-source dataset of hyperelastic microscale TPMS structures, including a set of novel structures that demonstrate extreme energy dissipation capabilities. We show several potential applications of these structures in protective equipment and bone implants.

相關內容

Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lyapunov drift condition and trivially holds if the Markov chain is finite and irreducible.

Structural equation models (SEMs) are commonly used to study the structural relationship between observed variables and latent constructs. Recently, Bayesian fitting procedures for SEMs have received more attention thanks to their potential to facilitate the adoption of more flexible model structures, and variational approximations have been shown to provide fast and accurate inference for Bayesian analysis of SEMs. However, the application of variational approximations is currently limited to very simple, elemental SEMs. We develop mean-field variational Bayes algorithms for two SEM formulations for data that present non-Gaussian features such as skewness and multimodality. The proposed models exploit the use of mixtures of Gaussians, include covariates for the analysis of latent traits and consider missing data. We also examine two variational information criteria for model selection that are straightforward to compute in our variational inference framework. The performance of the MFVB algorithms and information criteria is investigated in a simulated data study and a real data application.

Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.

Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space, by adding the fine-tuned weights of different tasks. The performance has been further improved by a linear property which is illustrated by weight disentanglement. Yet, conventional linearization methods (e.g., NTK linearization) not only double the time and training cost but also have a disadvantage on single-task performance. We propose a simple yet effective and efficient method that only fine-tunes linear layers, which improves weight disentanglement and efficiency simultaneously. Specifically, our study reveals that only fine-tuning the linear layers in the attention modules makes the whole model occur in a linear regime, significantly improving weight disentanglement. To further understand how our method improves the disentanglement of task arithmetic, we present a comprehensive study of task arithmetic by differentiating the role of representation model and task-specific model. In particular, we find that the representation model plays an important role in improving weight disentanglement whereas the task-specific models such as the classification heads can degenerate the weight disentanglement performance. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to editing pre-trained models.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司