亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the study of geometric problems, the complexity class $\exists \mathbb{R}$ turned out to play a crucial role. It exhibits a deep connection between purely geometric problems and real algebra, and is sometimes referred to as the "real analogue" to the class NP. While NP can be considered as a class of computational problems that deals with existentially quantified boolean variables, $\exists \mathbb{R}$ deals with existentially quantified real variables. In analogy to $\Pi_2^p$ and $\Sigma_2^p$ in the famous polynomial hierarchy, we introduce and motivate the complexity classes $\forall\exists \mathbb{R}$ and $\exists \forall \mathbb{R}$ with real variables. Our main interest is focused on the Area Universality problem, where we are given a plane graph $G$, and ask if for each assignment of areas to the inner faces of $G$ there is an area-realizing straight-line drawing of $G$. We conjecture that the problem Area Universality is $\forall\exists \mathbb{R}$-complete and support this conjecture by a series of partial results, where we prove $\exists \mathbb{R}$- and $\forall\exists \mathbb{R}$-completeness of variants of Area Universality. To do so, we also introduce first tools to study $\forall\exists \mathbb{R}$, such as restricted variants of UETR, which are $\forall\exists \mathbb{R}$-complete. Finally, we present geometric problems as candidates for $\forall\exists \mathbb{R}$-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.

相關內容

This paper devises a novel lowest-order conforming virtual element method (VEM) for planar linear elasticity with the pure displacement/traction boundary condition. The main trick is to view a generic polygon $K$ as a new one $\widetilde{K}$ with additional vertices consisting of interior points on edges of $K$, so that the discrete admissible space is taken as the $V_1$ type virtual element space related to the partition $\{\widetilde{K}\}$ instead of $\{K\}$. The method is shown to be uniformly convergent with the optimal rates both in $H^1$ and $L^2$ norms with respect to the Lam\'{e} constant $\lambda$. Numerical tests are presented to illustrate the good performance of the proposed VEM and confirm the theoretical results.

Probabilistic zero forcing is a coloring game played on a graph where the goal is to color every vertex blue starting with an initial blue vertex set. As long as the graph is connected, if at least one vertex is blue then eventually all of the vertices will be colored blue. The most studied parameter in probabilistic zero forcing is the expected propagation time starting from a given vertex of $G.$ In this paper we improve on upper bounds for the expected propagation time by Geneson and Hogben and Chan et al. in terms of a graph's order and radius. In particular, for a connected graph $G$ of order $n$ and radius $r,$ we prove the bound $\text{ept}(G) = O(r\log(n/r)).$ We also show using Doob's Optional Stopping Theorem and a combinatorial object known as a cornerstone that $\text{ept}(G) \le n/2 + O(\log n).$ Finally, we derive an explicit lower bound $\text{ept}(G)\ge \log_2 \log_2 n.$

We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bez\'akov\'a et al. proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O (k)} n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O(k)} n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path Above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k (diam(G) denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path Above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path Above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path Above Diameter is solvable in polynomial time for each k\in{1,\dots, 4} and is NP-complete for every k\geq 5. The parameterized complexity of Longest Path Above Diameter on general directed graphs remains an interesting open problem.

The Mat\'ern covariance function is ubiquitous in the application of Gaussian processes to spatial statistics and beyond. Perhaps the most important reason for this is that the smoothness parameter $\nu$ gives complete control over the mean-square differentiability of the process, which has significant implications for the behavior of estimated quantities such as interpolants and forecasts. Unfortunately, derivatives of the Mat\'ern covariance function with respect to $\nu$ require derivatives of the modified second-kind Bessel function $\mathcal{K}_\nu$ with respect to $\nu$. While closed form expressions of these derivatives do exist, they are prohibitively difficult and expensive to compute. For this reason, many software packages require fixing $\nu$ as opposed to estimating it, and all existing software packages that attempt to offer the functionality of estimating $\nu$ use finite difference estimates for $\partial_\nu \mathcal{K}_\nu$. In this work, we introduce a new implementation of $\mathcal{K}_\nu$ that has been designed to provide derivatives via automatic differentiation (AD), and whose resulting derivatives are significantly faster and more accurate than those computed using finite differences. We provide comprehensive testing for both speed and accuracy and show that our AD solution can be used to build accurate Hessian matrices for second-order maximum likelihood estimation in settings where Hessians built with finite difference approximations completely fail.

It is an open question to determine if the theory of self-concordant barriers can provide an interior point method with strongly polynomial complexity in linear programming. In the special case of the logarithmic barrier, it was shown in [Allamigeon, Benchimol, Gaubert and Joswig, SIAM J. on Applied Algebra and Geometry, 2018] that the answer is negative. In this paper, we show that none of the self-concordant barrier interior point methods is strongly polynomial. This result is obtained by establishing that, on parametric families of convex optimization problems, the log-limit of the central path degenerates to a piecewise linear curve, independently of the choice of the barrier function. We provide an explicit linear program that falls in the same class as the Klee-Minty counterexample, i.e., in dimension $n$ with $2n$ constraints, in which the number of iterations is $\Omega(2^n)$.

The Fr\'{e}chet distance is a well-studied similarity measure between curves that is widely used throughout computer science. Motivated by applications where curves stem from paths and walks on an underlying graph (such as a road network), we define and study the Fr\'{e}chet distance for paths and walks on graphs. When provided with a distance oracle of $G$ with $O(1)$ query time, the classical quadratic-time dynamic program can compute the Fr\'{e}chet distance between two walks $P$ and $Q$ in a graph $G$ in $O(|P| \cdot |Q|)$ time. We show that there are situations where the graph structure helps with computing Fr\'{e}chet distance: when the graph $G$ is planar, we apply existing (approximate) distance oracles to compute a $(1+\varepsilon)$-approximation of the Fr\'{e}chet distance between any shortest path $P$ and any walk $Q$ in $O(|G| \log |G| / \sqrt{\varepsilon} + |P| + \frac{|Q|}{\varepsilon } )$ time. We generalise this result to near-shortest paths, i.e. $\kappa$-straight paths, as we show how to compute a $(1+\varepsilon)$-approximation between a $\kappa$-straight path $P$ and any walk $Q$ in $O(|G| \log |G| / \sqrt{\varepsilon} + |P| + \frac{\kappa|Q|}{\varepsilon } )$ time. Our algorithmic results hold for both the strong and the weak discrete Fr\'{e}chet distance over the shortest path metric in $G$. Finally, we show that additional assumptions on the input, such as our assumption on path straightness, are indeed necessary to obtain truly subquadratic running time. We provide a conditional lower bound showing that the Fr\'{e}chet distance, or even its $1.01$-approximation, between arbitrary \emph{paths} in a weighted planar graph cannot be computed in $O((|P|\cdot|Q|)^{1-\delta})$ time for any $\delta > 0$ unless the Orthogonal Vector Hypothesis fails. For walks, this lower bound holds even when $G$ is planar, unit-weight and has $O(1)$ vertices.

We study the problem of query evaluation on probabilistic graphs, namely, tuple-independent probabilistic databases over signatures of arity two. We focus on the class of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive queries. Our main result states that the probabilistic query evaluation problem is #P-hard for all unbounded queries from this class. As bounded queries from this class are equivalent to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy, between polynomial time and #P-hardness, on evaluating homomorphism-closed queries over probabilistic graphs. This dichotomy covers in particular all fragments of infinite unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy also applies to a restricted case of probabilistic query evaluation called generalized model counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from the source-to-target reliability problem in an undirected graph, depending on properties of minimal models for the query.

We study the class of first-order locally-balanced Metropolis--Hastings algorithms introduced in Livingstone & Zanella (2021). To choose a specific algorithm within the class the user must select a balancing function $g:\mathbb{R} \to \mathbb{R}$ satisfying $g(t) = tg(1/t)$, and a noise distribution for the proposal increment. Popular choices within the class are the Metropolis-adjusted Langevin algorithm and the recently introduced Barker proposal. We first establish a universal limiting optimal acceptance rate of 57% and scaling of $n^{-1/3}$ as the dimension $n$ tends to infinity among all members of the class under mild smoothness assumptions on $g$ and when the target distribution for the algorithm is of the product form. In particular we obtain an explicit expression for the asymptotic efficiency of an arbitrary algorithm in the class, as measured by expected squared jumping distance. We then consider how to optimise this expression under various constraints. We derive an optimal choice of noise distribution for the Barker proposal, optimal choice of balancing function under a Gaussian noise distribution, and optimal choice of first-order locally-balanced algorithm among the entire class, which turns out to depend on the specific target distribution. Numerical simulations confirm our theoretical findings and in particular show that a bi-modal choice of noise distribution in the Barker proposal gives rise to a practical algorithm that is consistently more efficient than the original Gaussian version.

A $k$-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value $k$ for which $G$ admits such coloring is denoted by $\chi'_a(G)$. We prove that $\chi'_a(G) = 2R + 1$ for most circulant graphs $C_n([1, R])$.

We develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics $d\mathbf{X}_t = a(\mathbf{X}_t)dt + \mathbf{b}(\mathbf{X}_t)d\mathbf{W}_t$. We formulate descriptions of Brownian motion and general drift-diffusion processes on surfaces. We consider statistics of the form $u(\mathbf{x}) = \mathbb{E}^{\mathbf{x}}\left[\int_0^\tau g(\mathbf{X}_t)dt \right] + \mathbb{E}^{\mathbf{x}}\left[f(\mathbf{X}_\tau)\right]$ for a domain $\Omega$ and the exit stopping time $\tau = \inf_t \{t > 0 \; |\; \mathbf{X}_t \not\in \Omega\}$, where $f,g$ are general smooth functions. For computing these statistics, we develop high-order Generalized Moving Least Squares (GMLS) solvers for associated surface PDE boundary-value problems based on Backward-Kolmogorov equations. We focus particularly on the mean First Passage Times (FPTs) given by the case $f = 0,\, g = 1$ where $u(\mathbf{x}) = \mathbb{E}^{\mathbf{x}}\left[\tau\right]$. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how statistics are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.

北京阿比特科技有限公司