亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents an in-depth analysis of the security landscape in Bluetooth Low Energy (BLE) tracking systems, with a particular emphasis on Apple AirTags and Samsung SmartTags, including their cryptographic frameworks. Our investigation traverses a wide spectrum of attack vectors such as physical tampering, firmware exploitation, signal spoofing, eavesdropping, jamming, app security flaws, Bluetooth security weaknesses, location spoofing, threats to owner devices, and cloud-related vulnerabilities. Moreover, we delve into the security implications of the cryptographic methods utilized in these systems. Our findings reveal that while BLE trackers like AirTags and SmartTags offer substantial utility, they also pose significant security risks. Notably, Apple's approach, which prioritizes user privacy by removing intermediaries, inadvertently leads to device authentication challenges, evidenced by successful AirTag spoofing instances. Conversely, Samsung SmartTags, designed to thwart beacon spoofing, raise critical concerns about cloud security and user privacy. Our analysis also highlights the constraints faced by these devices due to their design focus on battery life conservation, particularly the absence of secure boot processes, which leaves them susceptible to OS modification and a range of potential attacks. The paper concludes with insights into the anticipated evolution of these tracking systems. We predict that future enhancements will likely focus on bolstering security features, especially as these devices become increasingly integrated into the broader IoT ecosystem and face evolving privacy regulations. This shift is imperative to address the intricate balance between functionality and security in next-generation BLE tracking systems.

相關內容

This study investigates the estimation and the statistical inference about Conditional Average Treatment Effects (CATEs), which have garnered attention as a metric representing individualized causal effects. In our data-generating process, we assume linear models for the outcomes associated with binary treatments and define the CATE as a difference between the expected outcomes of these linear models. This study allows the linear models to be high-dimensional, and our interest lies in consistent estimation and statistical inference for the CATE. In high-dimensional linear regression, one typical approach is to assume sparsity. However, in our study, we do not assume sparsity directly. Instead, we consider sparsity only in the difference of the linear models. We first use a doubly robust estimator to approximate this difference and then regress the difference on covariates with Lasso regularization. Although this regression estimator is consistent for the CATE, we further reduce the bias using the techniques in double/debiased machine learning (DML) and debiased Lasso, leading to $\sqrt{n}$-consistency and confidence intervals. We refer to the debiased estimator as the triple/debiased Lasso (TDL), applying both DML and debiased Lasso techniques. We confirm the soundness of our proposed method through simulation studies.

In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.

In recent years, with the rapid development of graph neural networks (GNN), more and more graph datasets have been published for GNN tasks. However, when an upstream data owner publishes graph data, there are often many privacy concerns, because many real-world graph data contain sensitive information like person's friend list. Differential privacy (DP) is a common method to protect privacy, but due to the complex topological structure of graph data, applying DP on graphs often affects the message passing and aggregation of GNN models, leading to a decrease in model accuracy. In this paper, we propose a novel graph edge protection framework, graph publisher (GraphPub), which can protect graph topology while ensuring that the availability of data is basically unchanged. Through reverse learning and the encoder-decoder mechanism, we search for some false edges that do not have a large negative impact on the aggregation of node features, and use them to replace some real edges. The modified graph will be published, which is difficult to distinguish between real and false data. Sufficient experiments prove that our framework achieves model accuracy close to the original graph with an extremely low privacy budget.

Federated Learning (FL) is a collaborative training paradigm that allows for privacy-preserving learning of cross-institutional models by eliminating the exchange of sensitive data and instead relying on the exchange of model parameters between the clients and a server. Despite individual studies on how client models are aggregated, and, more recently, on the benefits of ImageNet pre-training, there is a lack of understanding of the effect the architecture chosen for the federation has, and of how the aforementioned elements interconnect. To this end, we conduct the first joint ARchitecture-Initialization-Aggregation study and benchmark ARIAs across a range of medical image classification tasks. We find that, contrary to current practices, ARIA elements have to be chosen together to achieve the best possible performance. Our results also shed light on good choices for each element depending on the task, the effect of normalisation layers, and the utility of SSL pre-training, pointing to potential directions for designing FL-specific architectures and training pipelines.

Most of the existing research on degrees-of-freedom (DoF) with imperfect channel state information at the transmitter (CSIT) assume the messages are private, which may not reflect reality as the two receivers can request the same content. To overcome this limitation, we therefore consider the hybrid unicast and multicast messages. In particular, we characterize the optimal DoF region for the two-user multiple-input multiple-output (MIMO) broadcast channel (BC) with imperfect CSIT and hybrid messages. For the converse, we establish a three-step procedure to exploit the utmost possible relaxation. For the achievability, since the DoF region is with specific three-dimensional structure regarding antenna configurations and CSIT qualities, we verify the existence or non-existence of corner point candidates via the feature of antenna configurations and CSIT qualities categorization and provide a hybrid message-aware rate-splitting scheme. Besides, we show that to achieve the strictly positive corner points, it is unnecessary to split the unicast messages into private and common parts. This implies adding a multicast message may mitigate the rate-splitting complexity.

We study reinforcement learning for global decision-making in the presence of many local agents, where the global decision-maker makes decisions affecting all local agents, and the objective is to learn a policy that maximizes the rewards of both the global and the local agents. Such problems find many applications, e.g. demand response, EV charging, queueing, etc. In this setting, scalability has been a long-standing challenge due to the size of the state/action space which can be exponential in the number of agents. This work proposes the SUB-SAMPLE-Q algorithm where the global agent subsamples $k\leq n$ local agents to compute an optimal policy in time that is only exponential in $k$, providing an exponential speedup from standard methods that are exponential in $n$. We show that the learned policy converges to the optimal policy in the order of $\tilde{O}(1/\sqrt{k}+\epsilon_{k,m})$ as the number of sub-sampled agents $k$ increases, where $\epsilon_{k,m}$ is the Bellman noise. We also conduct numerical simulations in a demand-response setting and a queueing setting.

Prompt engineering in LLMs has shown potential for improving translation quality. However, the potential of incorporating translation concepts in prompt design remains largely underexplored. Against this backdrop, this paper discusses the effectiveness of incorporating the conceptual tool of translation brief and the personas of translator and author into prompt design for translation tasks in ChatGPT. Findings suggest that, although certain elements are constructive in facilitating human to human communication for translation tasks, their effectiveness is limited for improving translation quality in ChatGPT. This accentuates the need for more explorative research on how translation theorists and practitioners can develop the current set of conceptual tools rooted in the human to human communication paradigm for translation purposes in this emerging workflow involving human machine interaction.

This comprehensive survey explored the evolving landscape of generative Artificial Intelligence (AI), with a specific focus on the transformative impacts of Mixture of Experts (MoE), multimodal learning, and the speculated advancements towards Artificial General Intelligence (AGI). It critically examined the current state and future trajectory of generative Artificial Intelligence (AI), exploring how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains, including an impact analysis on the generative AI research taxonomy. It assessed the computational challenges, scalability, and real-world implications of these technologies while highlighting their potential in driving significant progress in fields like healthcare, finance, and education. It also addressed the emerging academic challenges posed by the proliferation of both AI-themed and AI-generated preprints, examining their impact on the peer-review process and scholarly communication. The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare, and outlined a strategy for future AI research that focuses on a balanced and conscientious use of MoE, multimodality, and AGI in generative AI.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司