This paper considers maximum likelihood (ML) estimation in a large class of models with hidden Markov regimes. We investigate consistency of the ML estimator and local asymptotic normality for the models under general conditions which allow for autoregressive dynamics in the observable process, Markov regime sequences with covariate-dependent transition matrices, and possible model misspecification. A Monte Carlo study examines the finite-sample properties of the ML estimator in correctly specified and misspecified models. An empirical application is also discussed.
Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
We study Martin-L\"{o}f random (ML-random) points on computable probability measures on sample and parameter spaces (Bayes models). We consider four variants of conditional random sequences with respect to the conditional distributions: two of them are defined by ML-randomness on Bayes models and the others are defined by blind tests for conditional distributions. We consider a weak criterion for conditional ML-randomness and show that only variants of ML-randomness on Bayes models satisfy the criterion. We show that these four variants of conditional randomness are identical when the conditional probability measure is computable and the posterior distribution converges weakly to almost all parameters. We compare ML-randomness on Bayes models with randomness for uniformly computable parametric models. It is known that two computable probability measures are orthogonal if and only if their ML-random sets are disjoint. We extend these results for uniformly computable parametric models. Finally, we present an algorithmic solution to a classical problem in Bayes statistics, i.e.~the posterior distributions converge weakly to almost all parameters if and only if the posterior distributions converge weakly to all ML-random parameters.
We study regression adjustments with additional covariates in randomized experiments under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We develop a regression-adjusted local average treatment effect (LATE) estimator that is proven to improve efficiency in the estimation of LATEs under CARs. Our adjustments can be parametric in linear and nonlinear forms, nonparametric, and high-dimensional. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the minimum asymptotic variance. When the adjustments are parametrically misspecified, we construct a new estimator which is weakly more efficient than linearly and nonlinearly adjusted estimators, as well as the one without any adjustments. Simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator.
This paper considers adaptive, minimax estimation of a quadratic functional in a nonparametric instrumental variables (NPIV) model, which is an important problem in optimal estimation of a nonlinear functional of an ill-posed inverse regression with an unknown operator. We first show that a leave-one-out, sieve NPIV estimator of the quadratic functional can attain a convergence rate that coincides with the lower bound previously derived in Chen and Christensen [2018]. The minimax rate is achieved by the optimal choice of the sieve dimension (a key tuning parameter) that depends on the smoothness of the NPIV function and the degree of ill-posedness, both are unknown in practice. We next propose a Lepski-type data-driven choice of the key sieve dimension adaptive to the unknown NPIV model features. The adaptive estimator of the quadratic functional is shown to attain the minimax optimal rate in the severely ill-posed case and in the regular mildly ill-posed case, but up to a multiplicative $\sqrt{\log n}$ factor in the irregular mildly ill-posed case.
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent uncertainty, such as weather forecasting, medical prognosis, or collision avoidance in autonomous vehicles. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the important difference that the objective is to estimate probabilities rather than predicting the specific outcome. The goal of this work is to investigate probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on classification problems where the probabilities are related to model uncertainty. In the case of problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
A solution to control for nonresponse bias consists of multiplying the design weights of respondents by the inverse of estimated response probabilities to compensate for the nonrespondents. Maximum likelihood and calibration are two approaches that can be applied to obtain estimated response probabilities. The paper develops asymptotic properties of the resulting estimator when calibration is applied. A logistic regression model for the response probabilities is postulated and missing at random data is supposed. The author shows that the estimators with the response probabilities estimated via calibration are asymptotically equivalent to unbiased estimators and that a gain in efficiency is obtained when estimating the response probabilities via calibration as compared to the estimator with the true response probabilities.
This article discusses the problem of determining whether a given point, or set of points, lies within the convex hull of another set of points in $d$ dimensions. This problem arises naturally in a statistical context when using a particular approximation to the loglikelihood function for an exponential family model; in particular, we discuss the application to network models here. While the convex hull question may be solved via a simple linear program, this approach is not well known in the statistical literature. Furthermore, this article details several substantial improvements to the convex hull-testing algorithm currently implemented in the widely used 'ergm' package for network modeling.
We introduce Monte-Carlo Attention (MCA), a randomized approximation method for reducing the computational cost of self-attention mechanisms in Transformer architectures. MCA exploits the fact that the importance of each token in an input sequence varies with respect to their attention scores; thus, some degree of error can be tolerable when encoding tokens with low attention. Using approximate matrix multiplication, MCA applies different error bounds to encode input tokens such that those with low attention scores are computed with relaxed precision, whereas errors of salient elements are minimized. MCA can operate in parallel with other attention optimization schemes and does not require model modification. We study the theoretical error bounds and demonstrate that MCA reduces attention complexity (in FLOPS) for various Transformer models by up to 11$\times$ in GLUE benchmarks without compromising model accuracy.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.