In Pliable Private Information Retrieval (PPIR) with a single server, messages are partitioned into $\Gamma$ non-overlapping classes. The user wants to retrieve a message from its desired class without revealing the identity of the desired class to the server. In S. A. Obead, H. Y. Lin and E. Rosnes, Single-Server Pliable Private Information Retrieval With Side Information, arXiv:2305.06857, authors consider the problem of PPIR with Side Information (PPIR-SI), where the user now has side information. The user wants to retrieve any new message (not included in the side information) from its desired class without revealing the identity of the desired class and its side information. A scheme for the PPIR-SI is given by Obead et al. for the case when the users side information is unidentified, and this case is referred to as PPIR with Unidentifiable SI (PPIR-USI). In this paper, we study the problem of PPIR for the single server case when the side information is partially identifiable, and we term this case as PPIR with Identifiable Side Information (PPIR-ISI). The user is well aware of the identity of the side information belonging to $\eta$ number of classes, where $1\leq \eta \leq \Gamma$. In this problem, The user wants to retrieve a message from its desired class without revealing the identity of the desired class to the server. We give a scheme for PPIR-ISI, and we prove that having identifiable side information is advantageous by comparing the rate of the proposed scheme to the rate of the PPIR-USI scheme given by Obead et al. for some cases. Further, we extend the problem of PPIR-ISI for multi-user case, where users can collaborately generate the query sets, and we give a scheme for this problem.
Cross-domain sequential recommendation (CDSR) aims to uncover and transfer users' sequential preferences across multiple recommendation domains. While significant endeavors have been made, they primarily concentrated on developing advanced transfer modules and aligning user representations using self-supervised learning techniques. However, the problem of aligning item representations has received limited attention, and misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment. To this end, we propose a model-agnostic framework called \textbf{C}ross-domain item representation \textbf{A}lignment for \textbf{C}ross-\textbf{D}omain \textbf{S}equential \textbf{R}ecommendation (\textbf{CA-CDSR}), which achieves sequence-aware generation and adaptively partial alignment for item representations. Specifically, we first develop a sequence-aware feature augmentation strategy, which captures both collaborative and sequential item correlations, thus facilitating holistic item representation generation. Next, we conduct an empirical study to investigate the partial representation alignment problem from a spectrum perspective. It motivates us to devise an adaptive spectrum filter, achieving partial alignment adaptively. Furthermore, the aligned item representations can be fed into different sequential encoders to obtain user representations. The entire framework is optimized in a multi-task learning paradigm with an annealing strategy. Extensive experiments have demonstrated that CA-CDSR can surpass state-of-the-art baselines by a significant margin and can effectively align items in representation spaces to enhance performance.
WQMIX, QMIX, QTRAN, and VDN are SOTA algorithms for Dec-POMDP. All of them cannot solve complex agents' cooperation domains. We give an algorithm to solve such problems. In the first stage, we solve a single-agent problem and get a policy. In the second stage, we solve the multi-agent problem with the single-agent policy. SA2MA has a clear advantage over all competitors in complex agents' cooperative domains.
Proving local robustness is crucial to increase the reliability of neural networks. While many verifiers prove robustness in $L_\infty$ $\epsilon$-balls, very little work deals with robustness verification in $L_0$ $\epsilon$-balls, capturing robustness to few pixel attacks. This verification introduces a combinatorial challenge, because the space of pixels to perturb is discrete and of exponential size. A previous work relies on covering designs to identify sets for defining $L_\infty$ neighborhoods, which if proven robust imply that the $L_0$ $\epsilon$-ball is robust. However, the number of neighborhoods to verify remains very high, leading to a high analysis time. We propose covering verification designs, a combinatorial design that tailors effective but analysis-incompatible coverings to $L_0$ robustness verification. The challenge is that computing a covering verification design introduces a high time and memory overhead, which is intensified in our setting, where multiple candidate coverings are required to identify how to reduce the overall analysis time. We introduce CoVerD, an $L_0$ robustness verifier that selects between different candidate coverings without constructing them, but by predicting their block size distribution. This prediction relies on a theorem providing closed-form expressions for the mean and variance of this distribution. CoVerD constructs the chosen covering verification design on-the-fly, while keeping the memory consumption minimal and enabling to parallelize the analysis. The experimental results show that CoVerD reduces the verification time on average by up to 5.1x compared to prior work and that it scales to larger $L_0$ $\epsilon$-balls.
In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
Network function (NF) offloading on SmartNICs has been widely used in modern data centers, offering benefits in host resource saving and programmability. Co-running NFs on the same SmartNICs can cause performance interference due to onboard resource contention. Therefore, to meet performance SLAs while ensuring efficient resource management, operators need mechanisms to predict NF performance under such contention. However, existing solutions lack SmartNIC-specific knowledge and exhibit limited traffic awareness, leading to poor accuracy for on-NIC NFs. This paper proposes Tomur, a novel performance predictive system for on-NIC NFs. Tomur builds upon the key observation that co-located NFs contend for multiple resources, including onboard accelerators and the memory subsystem. It also facilitates traffic awareness according to the behaviors of individual resources to maintain accuracy as the external traffic attributes vary. Evaluation using BlueField-2 SmartNIC shows that Tomur improves the prediction accuracy by 78.8% and reduces SLA violations by 92.2% compared to state-of-the-art approaches, and enables new practical usecases.
Large language models (LLMs) are vulnerable when trained on datasets containing harmful content, which leads to potential jailbreaking attacks in two scenarios: the integration of harmful texts within crowdsourced data used for pre-training and direct tampering with LLMs through fine-tuning. In both scenarios, adversaries can compromise the safety alignment of LLMs, exacerbating malfunctions. Motivated by the need to mitigate these adversarial influences, our research aims to enhance safety alignment by either neutralizing the impact of malicious texts in pre-training datasets or increasing the difficulty of jailbreaking during downstream fine-tuning. In this paper, we propose a data curation framework designed to counter adversarial impacts in both scenarios. Our method operates under the assumption that we have no prior knowledge of attack details, focusing solely on curating clean texts. We introduce an iterative process aimed at revising texts to reduce their perplexity as perceived by LLMs, while simultaneously preserving their text quality. By pre-training or fine-tuning LLMs with curated clean texts, we observe a notable improvement in LLM robustness regarding safety alignment against harmful queries. For instance, when pre-training LLMs using a crowdsourced dataset containing 5\% harmful instances, adding an equivalent amount of curated texts significantly mitigates the likelihood of providing harmful responses in LLMs and reduces the attack success rate by 71\%. Our study represents a significant step towards mitigating the risks associated with training-based jailbreaking and fortifying the secure utilization of LLMs.
POKT Network's decentralized Remote Procedure Call (RPC) infrastructure, surpassing 740 billion requests since launching on MainNet in 2020, is well-positioned to extend into providing AI inference services with minimal design or implementation modifications. This litepaper illustrates how the network's open-source and permissionless design aligns incentives among model researchers, hardware operators, API providers and users whom we term model Sources, Suppliers, Gateways and Applications respectively. Through its Relay Mining algorithm, POKT creates a transparent marketplace where costs and earnings directly reflect cryptographically verified usage. This decentralized framework offers large model AI researchers a new avenue to disseminate their work and generate revenue without the complexities of maintaining infrastructure or building end-user products. Supply scales naturally with demand, as evidenced in recent years and the protocol's free market dynamics. POKT Gateways facilitate network growth, evolution, adoption, and quality by acting as application-facing load balancers, providing value-added features without managing LLM nodes directly. This vertically decoupled network, battle tested over several years, is set up to accelerate the adoption, operation, innovation and financialization of open-source models. It is the first mature permissionless network whose quality of service competes with centralized entities set up to provide application grade inference.
The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.