亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A general quantum circuit can be simulated classically in exponential time. If it has a planar layout, then a tensor-network contraction algorithm due to Markov and Shi has a runtime exponential in the square root of its size, or more generally exponential in the treewidth of the underlying graph. Separately, Gottesman and Knill showed that if all gates are restricted to be Clifford, then there is a polynomial time simulation. We combine these two ideas and show that treewidth and planarity can be exploited to improve Clifford circuit simulation. Our main result is a classical algorithm with runtime scaling asymptotically as $n^{\omega/2}<n^{1.19}$ which samples from the output distribution obtained by measuring all $n$ qubits of a planar graph state in given Pauli bases. Here $\omega$ is the matrix multiplication exponent. We also provide a classical algorithm with the same asymptotic runtime which samples from the output distribution of any constant-depth Clifford circuit in a planar geometry. Our work improves known classical algorithms with cubic runtime. A key ingredient is a mapping which, given a tree decomposition of some graph $G$, produces a Clifford circuit with a structure that mirrors the tree decomposition and which emulates measurement of the corresponding graph state. We provide a classical simulation of this circuit with the runtime stated above for planar graphs and otherwise $nt^{\omega-1}$ where $t$ is the width of the tree decomposition. Our algorithm incorporates two subroutines which may be of independent interest. The first is a matrix-multiplication-time version of the Gottesman-Knill simulation of multi-qubit measurement on stabilizer states. The second is a new classical algorithm for solving symmetric linear systems over $\mathbb{F}_2$ in a planar geometry, extending previous works which only applied to non-singular linear systems in the analogous setting.

相關內容

We study the phase synchronization problem with noisy measurements $Y=z^*z^{*H}+\sigma W\in\mathbb{C}^{n\times n}$, where $z^*$ is an $n$-dimensional complex unit-modulus vector and $W$ is a complex-valued Gaussian random matrix. It is assumed that each entry $Y_{jk}$ is observed with probability $p$. We prove that an SDP relaxation of the MLE achieves the error bound $(1+o(1))\frac{\sigma^2}{2np}$ under a normalized squared $\ell_2$ loss. This result matches the minimax lower bound of the problem, and even the leading constant is sharp. The analysis of the SDP is based on an equivalent non-convex programming whose solution can be characterized as a fixed point of the generalized power iteration lifted to a higher dimensional space. This viewpoint unifies the proofs of the statistical optimality of three different methods: MLE, SDP, and generalized power method. The technique is also applied to the analysis of the SDP for $\mathbb{Z}_2$ synchronization, and we achieve the minimax optimal error $\exp\left(-(1-o(1))\frac{np}{2\sigma^2}\right)$ with a sharp constant in the exponent.

Real-time analysis of bio-heat transfer is very beneficial in improving clinical outcomes of hyperthermia and thermal ablative treatments but challenging to achieve due to large computational costs. This paper presents a fast numerical algorithm well suited for real-time solutions of bio-heat transfer, and it achieves real-time computation via the (i) computationally efficient explicit dynamics in the temporal domain, (ii) element-level thermal load computation, (iii) computationally efficient finite elements, (iv) explicit formulation for unknown nodal temperature, and (v) pre-computation of constant simulation matrices and parameters, all of which lead to a significant reduction in computation time for fast run-time computation. The proposed methodology considers temperature-dependent thermal properties for nonlinear characteristics of bio-heat transfer in soft tissue. Utilising a parallel execution, the proposed method achieves computation time reduction of 107.71 and 274.57 times compared to those of with and without parallelisation of the commercial finite element codes if temperature-dependent thermal properties are considered, and 303.07 and 772.58 times if temperature-independent thermal properties are considered, far exceeding the computational performance of the commercial finite element codes, presenting great potential in real-time predictive analysis of tissue temperature for planning, optimisation and evaluation of thermo-therapeutic treatments. The source code is available at //github.com/jinaojakezhang/FEDFEMBioheat.

In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that applies to meshes composed of general polygonal elements. The discrete plates complex is then used to derive a novel numerical scheme for Kirchhoff--Love plates, for which a full stability and convergence analysis are performed. Extensive numerical tests complete the exposition.

We study the problem of identifying the source of a stochastic diffusion process spreading on a graph based on the arrival times of the diffusion at a few queried nodes. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to identify $v^*$ by querying nodes $q \in V$ and being told the length of the shortest path between $q$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: non-adaptive, in which all query nodes must be decided in advance, and adaptive, in which each query can depend on the results of the previous ones. Both settings are motivated by an application of the problem to epidemic processes (where the source is called patient zero), which we discuss in detail. We characterize the query complexity when $G$ is an $n$-node path. In the non-adaptive setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the adaptive setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of source identification with time queries in a non-deterministic diffusion process.

In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. It is well known that there is a significant difference between the Hilbert space associated with the fractional Gaussian processes in the case of $H\in (\frac12, 1)$ and that of $H\in (0, \frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ associated with the Gaussian process $(G_t)_{t\ge 0}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Then we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations. A good many inequality estimates are involved in and we also make use of the estimation of the inner product based on the results of $\mathfrak{H}_1$ in Hu, Nualart and Zhou 2019.

Inspired by [4] we present a new algorithm for uniformly random generation of ordered trees in which all occuring outdegrees can be specified by a given sequence of numbers. The method can be used for random generation of binary or n-ary trees, or ones with various arities. We show that the algorithm is correct and has $O(n)$ time complexity for $n$ being the desired number of nodes in the resulting tree. In the discussion part we show how some selected formulas can be derived with the use of ideas developed in the proof of correctness of the algorithm.

Sparse binary matrices are of great interest in the field of compressed sensing. This class of matrices make possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, random matrices formed by i.i.d Bernoulli $p$ random variables are of practical relevance in the context of nonnegative sparse recovery. In this work, we investigate the robust nullspace property of sparse Bernoulli $p$ matrices. Previous results in the literature establish that such matrices can accurately recover $n$-dimensional $s$-sparse vectors with $m=O\left (\frac{s}{c(p)}\log\frac{en}{s}\right )$ measurements, where $c(p) \le p$ is a constant that only depends on the parameter $p$. These results suggest that, when $p$ vanishes, the sparse Bernoulli matrix requires considerably more measurements than the minimal necessary achieved by the standard isotropic subgaussian designs. We show that this is not true. Our main result characterizes, for a wide range of levels sparsity $s$, the smallest $p$ such that it is possible to perform sparse recovery with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results.

Handling clustering problems are important in data statistics, pattern recognition and image processing. The mean-shift algorithm, a common unsupervised algorithms, is widely used to solve clustering problems. However, the mean-shift algorithm is restricted by its huge computational resource cost. In previous research[10], we proposed a novel GPU-accelerated Faster Mean-shift algorithm, which greatly speed up the cosine-embedding clustering problem. In this study, we extend and improve the previous algorithm to handle Euclidean distance metrics. Different from conventional GPU-based mean-shift algorithms, our algorithm adopts novel Seed Selection & Early Stopping approaches, which greatly increase computing speed and reduce GPU memory consumption. In the simulation testing, when processing a 200K points clustering problem, our algorithm achieved around 3 times speedup compared to the state-of-the-art GPU-based mean-shift algorithms with optimized GPU memory consumption. Moreover, in this study, we implemented a plug-and-play model for faster mean-shift algorithm, which can be easily deployed. (Plug-and-play model is available: //github.com/masqm/Faster-Mean-Shift-Euc)

Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

北京阿比特科技有限公司