Polynomial approximations of functions are widely used in scientific computing. In certain applications, it is often desired to require the polynomial approximation to be non-negative (resp. non-positive), or bounded within a given range, due to constraints posed by the underlying physical problems. Efficient numerical methods are thus needed to enforce such conditions. In this paper, we discuss effective numerical algorithms for polynomial approximation under non-negativity constraints. We first formulate the constrained optimization problem, its primal and dual forms, and then discuss efficient first-order convex optimization methods, with a particular focus on high dimensional problems. Numerical examples are provided, for up to $200$ dimensions, to demonstrate the effectiveness and scalability of the methods.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
Due to its reduced memory and computational demands, dynamical low-rank approximation (DLRA) has sparked significant interest in multiple research communities. A central challenge in DLRA is the development of time integrators that are robust to the curvature of the manifold of low-rank matrices. Recently, a parallel robust time integrator that permits dynamic rank adaptation and enables a fully parallel update of all low-rank factors was introduced. Despite its favorable computational efficiency, the construction as a first-order approximation to the augmented basis-update & Galerkin integrator restricts the parallel integrator's accuracy to order one. In this work, an extension to higher order is proposed by a careful basis augmentation before solving the matrix differential equations of the factorized solution. A robust error bound with an improved dependence on normal components of the vector field together with a norm preservation property up to small terms is derived. These analytic results are complemented and demonstrated through a series of numerical experiments.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good guarantees) or for theoretical purposes (e.g., to reveal that the landscape satisfies a strict saddle property). In both cases, the central question is: how do the landscapes of the two problems relate? More precisely: how do desirable points such as local minima and critical points in one problem relate to those in the other problem? A key finding in this paper is that these relations are often determined by the parametrization itself, and are almost entirely independent of the cost function. Accordingly, we introduce a general framework to study parametrizations by their effect on landscapes. The framework enables us to obtain new guarantees for an array of problems, some of which were previously treated on a case-by-case basis in the literature. Applications include: optimizing low-rank matrices and tensors through factorizations; solving semidefinite programs via the Burer-Monteiro approach; training neural networks by optimizing their weights and biases; and quotienting out symmetries.
Regression methods are fundamental for scientific and technological applications. However, fitted models can be highly unreliable outside of their training domain, and hence the quantification of their uncertainty is crucial in many of their applications. Based on the solution of a constrained optimization problem, we propose "prediction rigidities" as a method to obtain uncertainties of arbitrary pre-trained regressors. We establish a strong connection between our framework and Bayesian inference, and we develop a last-layer approximation that allows the new method to be applied to neural networks. This extension affords cheap uncertainties without any modification to the neural network itself or its training procedure. We show the effectiveness of our method on a wide range of regression tasks, ranging from simple toy models to applications in chemistry and meteorology.
As data from monitored structures become increasingly available, the demand grows for it to be used efficiently to add value to structural operation and management. One way in which this can be achieved is to use structural response measurements to assess the usefulness of models employed to describe deterioration processes acting on a structure, as well the mechanical behavior of the latter. This is what this work aims to achieve by first, framing Structural Health Monitoring as a Bayesian model updating problem, in which the quantities of inferential interest characterize the deterioration process and/or structural state. Then, using the posterior estimates of these quantities, a decision-theoretic definition is proposed to assess the structural and/or deterioration models based on (a) their ability to explain the data and (b) their performance on downstream decision support-based tasks. The proposed framework is demonstrated on strain response data obtained from a test specimen which was subjected to three-point bending while simultaneously exposed to accelerated corrosion leading to thickness loss. Results indicate that the level of \textit{a priori} domain knowledge on the deterioration form is critical.
We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of patterns in a permutation. For patterns of length 3 there are two Wilf classes, and the general behaviour of these is reasonably well-known. We slightly extend some of the known results in that case, and exhaustively study the case of patterns of length 4, about which there is little previous knowledge. For such patterns, there are seven Wilf classes, and based on extensive enumerations and careful series analysis, we have conjectured the asymptotic behaviour for all classes.
Evaluating environmental variables that vary stochastically is the principal topic for designing better environmental management and restoration schemes. Both the upper and lower estimates of these variables, such as water quality indices and flood and drought water levels, are important and should be consistently evaluated within a unified mathematical framework. We propose a novel pair of Orlicz regrets to consistently bound the statistics of random variables both from below and above. Here, consistency indicates that the upper and lower bounds are evaluated with common coefficients and parameter values being different from some of the risk measures proposed thus far. Orlicz regrets can flexibly evaluate the statistics of random variables based on their tail behavior. The explicit linkage between Orlicz regrets and divergence risk measures was exploited to better comprehend them. We obtain sufficient conditions to pose the Orlicz regrets as well as divergence risk measures, and further provide gradient descent-type numerical algorithms to compute them. Finally, we apply the proposed mathematical framework to the statistical evaluation of 31-year water quality data as key environmental indicators in a Japanese river environment.
Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.
The deconfounder was proposed as a method for estimating causal parameters in a context with multiple causes and unobserved confounding. It is based on recovery of a latent variable from the observed causes. We disentangle the causal interpretation from the statistical estimation problem and show that the deconfounder in general estimates adjusted regression target parameters. It does so by outcome regression adjusted for the recovered latent variable termed the substitute. We refer to the general algorithm, stripped of causal assumptions, as substitute adjustment. We give theoretical results to support that substitute adjustment estimates adjusted regression parameters when the regressors are conditionally independent given the latent variable. We also introduce a variant of our substitute adjustment algorithm that estimates an assumption-lean target parameter with minimal model assumptions. We then give finite sample bounds and asymptotic results supporting substitute adjustment estimation in the case where the latent variable takes values in a finite set. A simulation study illustrates finite sample properties of substitute adjustment. Our results support that when the latent variable model of the regressors hold, substitute adjustment is a viable method for adjusted regression.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.