This paper addresses the problem of selecting of a set of texts for annotation in text classification using retrieval methods when there are limits on the number of annotations due to constraints on human resources. An additional challenge addressed is dealing with binary categories that have a small number of positive instances, reflecting severe class imbalance. In our situation, where annotation occurs over a long time period, the selection of texts to be annotated can be made in batches, with previous annotations guiding the choice of the next set. To address these challenges, the paper proposes leveraging SHAP to construct a quality set of queries for Elasticsearch and semantic search, to try to identify optimal sets of texts for annotation that will help with class imbalance. The approach is tested on sets of cue texts describing possible future events, constructed by participants involved in studies aimed to help with the management of obesity and diabetes. We introduce an effective method for selecting a small set of texts for annotation and building high-quality classifiers. We integrate vector search, semantic search, and machine learning classifiers to yield a good solution. Our experiments demonstrate improved F1 scores for the minority classes in binary classification.
In this paper, we present a Computer Vision (CV) based tracking and fusion algorithm, dedicated to a 3D printed gimbal system on drones operating in nature. The whole gimbal system can stabilize the camera orientation robustly in a challenging nature scenario by using skyline and ground plane as references. Our main contributions are the following: a) a light-weight Resnet-18 backbone network model was trained from scratch, and deployed onto the Jetson Nano platform to segment the image into binary parts (ground and sky); b) our geometry assumption from nature cues delivers the potential for robust visual tracking by using the skyline and ground plane as a reference; c) a spherical surface-based adaptive particle sampling, can fuse orientation from multiple sensor sources flexibly. The whole algorithm pipeline is tested on our customized gimbal module including Jetson and other hardware components. The experiments were performed on top of a building in the real landscape.
This paper describes an approach to simultaneously identify clusters and estimate cluster-specific regression parameters from the given data. Such an approach can be useful in learning the relationship between input and output when the regression parameters for estimating output are different in different regions of the input space. Variational Inference (VI), a machine learning approach to obtain posterior probability densities using optimization techniques, is used to identify clusters of explanatory variables and regression parameters for each cluster. From these results, one can obtain both the expected value and the full distribution of predicted output. Other advantages of the proposed approach include the elegant theoretical solution and clear interpretability of results. The proposed approach is well-suited for financial forecasting where markets have different regimes (or clusters) with different patterns and correlations of market changes in each regime. In financial applications, knowledge about such clusters can provide useful insights about portfolio performance and identify the relative importance of variables in different market regimes. An illustrative example of predicting one-day S&P change is considered to illustrate the approach and compare the performance of the proposed approach with standard regression without clusters. Due to the broad applicability of the problem, its elegant theoretical solution, and the computational efficiency of the proposed algorithm, the approach may be useful in a number of areas extending beyond the financial domain.
Recent papers have demonstrated the possibility of energy-based text generation by adapting gradient-based sampling algorithms, a paradigm of MCMC algorithms that promises fast convergence. However, as we show in this paper, previous attempts on this approach to text generation all fail to sample correctly from the target language model distributions. To address this limitation, we consider the problem of designing text samplers that are faithful, meaning that they have the target text distribution as its limiting distribution. We propose several faithful gradient-based sampling algorithms to sample from the target energy-based text distribution correctly, and study their theoretical properties. Through experiments on various forms of text generation, we demonstrate that faithful samplers are able to generate more fluent text while adhering to the control objectives better.
This paper presents an iterative detection and decoding scheme along with an adaptive strategy to improve the selection of access points (APs) in a grant-free uplink cell-free scenario. With the requirement for the APs to have low-computational power in mind, we introduce a low-complexity scheme for local activity and data detection. At the central processing unit (CPU) level, we propose an adaptive technique based on local log-likelihood ratios (LLRs) to select the list of APs that should be considered for each device. Simulation results show that the proposed LLRs-based APs selection scheme outperforms the existing techniques in the literature in terms of bit error rate (BER) while requiring comparable fronthaul load.
In this paper, a feature extraction approach for the deformable linear object is presented, which uses a Bezier curve to represent the original geometric shape. The proposed extraction strategy is combined with a parameterization technique, the goal is to compute the regression features from the visual-feedback RGB image, and finally obtain the efficient shape feature in the low-dimensional latent space. Existing works of literature often fail to capture the complex characteristics in a unified framework. They also struggle in scenarios where only local shape descriptors are used to guide the robot to complete the manipulation. To address these challenges, we propose a feature extraction technique using a parameterization approach to generate the regression features, which leverages the power of the Bezier curve and linear regression. The proposed extraction method effectively captures topological features and node characteristics, making it well-suited for the deformation object manipulation task. Large mount of simulations are conducted to evaluate the presented method. Our results demonstrate that the proposed method outperforms existing methods in terms of prediction accuracy, robustness, and computational efficiency. Furthermore, our approach enables the extraction of meaningful insights from the predicted links, thereby contributing to a better understanding of the shape of the deformable linear objects. Overall, this work represents a significant step forward in the use of Bezier curve for shape representation.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.
To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.