亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Imposter syndrome is a psychological phenomenon that affects individuals who doubt their skills and abilities, despite possessing the necessary competencies. This can lead to a lack of confidence and poor performance. While research has explored the impacts of imposter syndrome on students and professionals in various fields, there is limited knowledge on how it affects code comprehension in software engineering. In this exploratory study, we investigate the prevalence of imposter syndrome among final-year undergraduate computer science students and its effects on their code comprehension cognition using an eye tracker and heart rate monitor. Key findings demonstrate that students identifying as male exhibit lower imposter syndrome levels when analyzing code, and higher imposter syndrome is associated with increased time reviewing a code snippet and a lower likelihood of solving it correctly. This study provides initial data on this topic and establishes a foundation for further research to support student academic success and improve developer productivity and mental well-being.

相關內容

計算機科學(Computer Science, CS)是系統性研究信息與計算的理論基礎以及它們在計算機系統中如何實現與應用的實用技術的學科。 它通常被形容為對那些創造、描述以及轉換信息的算法處理的系統研究。計算機科學包含很多分支領域;其中一些,比如計算機圖形學強調特定結果的計算,而另外一些,比如計算復雜性理論是學習計算問題的性質。還有一些領域專注于挑戰怎樣實現計算。比如程序設計語言理論學習描述計算的方法,而程序設計是應用特定的程序設計語言解決特定的計算問題,人機交互則是專注于挑戰怎樣使計算機和計算變得有用、可用,以及隨時隨地為 所用。 現代計算機科學( Computer Science)包含理論計算機科學和應用計算機科學兩大分支。

In nonsmooth, nonconvex stochastic optimization, understanding the uniform convergence of subdifferential mappings is crucial for analyzing stationary points of sample average approximations of risk as they approach the population risk. Yet, characterizing this convergence remains a fundamental challenge. This work introduces a novel perspective by connecting the uniform convergence of subdifferential mappings to that of subgradient mappings as empirical risk converges to the population risk. We prove that, for stochastic weakly-convex objectives, and within any open set, a uniform bound on the convergence of subgradients -- chosen arbitrarily from the corresponding subdifferential sets -- translates to a uniform bound on the convergence of the subdifferential sets itself, measured by the Hausdorff metric. Using this technique, we derive uniform convergence rates for subdifferential sets of stochastic convex-composite objectives. Our results do not rely on key distributional assumptions in the literature, which require the population and finite sample subdifferentials to be continuous in the Hausdorff metric, yet still provide tight convergence rates. These guarantees lead to new insights into the nonsmooth landscapes of such objectives within finite samples.

Continual learning methods are known to suffer from catastrophic forgetting, a phenomenon that is particularly hard to counter for methods that do not store exemplars of previous tasks. Therefore, to reduce potential drift in the feature extractor, existing exemplar-free methods are typically evaluated in settings where the first task is significantly larger than subsequent tasks. Their performance drops drastically in more challenging settings starting with a smaller first task. To address this problem of feature drift estimation for exemplar-free methods, we propose to adversarially perturb the current samples such that their embeddings are close to the old class prototypes in the old model embedding space. We then estimate the drift in the embedding space from the old to the new model using the perturbed images and compensate the prototypes accordingly. We exploit the fact that adversarial samples are transferable from the old to the new feature space in a continual learning setting. The generation of these images is simple and computationally cheap. We demonstrate in our experiments that the proposed approach better tracks the movement of prototypes in embedding space and outperforms existing methods on several standard continual learning benchmarks as well as on fine-grained datasets. Code is available at //github.com/dipamgoswami/ADC.

In the current field of clinical medicine, traditional methods for analyzing recurrent events have limitations when dealing with complex time-dependent data. This study combines Long Short-Term Memory networks (LSTM) with the Cox model to enhance the model's performance in analyzing recurrent events with dynamic temporal information. Compared to classical models, the LSTM-Cox model significantly improves the accuracy of extracting clinical risk features and exhibits lower Akaike Information Criterion (AIC) values, while maintaining good performance on simulated datasets. In an empirical analysis of bladder cancer recurrence data, the model successfully reduced the mean squared error during the training phase and achieved a Concordance index of up to 0.90 on the test set. Furthermore, the model effectively distinguished between high and low-risk patient groups, and the identified recurrence risk features such as the number of tumor recurrences and maximum size were consistent with other research and clinical trial results. This study not only provides a straightforward and efficient method for analyzing recurrent data and extracting features but also offers a convenient pathway for integrating deep learning techniques into clinical risk prediction systems.

Comprehensive clinical documentation is crucial for effective healthcare delivery, yet it poses a significant burden on healthcare professionals, leading to burnout, increased medical errors, and compromised patient safety. This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process, specifically focusing on generating SOAP (Subjective, Objective, Assessment, Plan) and BIRP (Behavior, Intervention, Response, Plan) notes. We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions, coupled with advanced prompting techniques to generate draft clinical notes using large language models (LLMs). The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care. Additionally, we discuss ethical considerations, such as maintaining patient confidentiality and addressing model biases, underscoring the need for responsible deployment of generative AI in healthcare settings. The findings suggest that generative AI has the potential to revolutionize clinical documentation practices, alleviating administrative burdens and enabling healthcare professionals to focus more on direct patient care.

Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To develop techniques to mitigate this problem, we propose a new method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are reminded to check the requirements for statistical methods by annotating their source code. Then, a software tool called StatWhy automatically checks whether the programmers have properly specified the requirements for the statistical methods. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs for statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in a variety of popular hypothesis testing programs.

The mining of adverse drug events (ADEs) is pivotal in pharmacovigilance, enhancing patient safety by identifying potential risks associated with medications, facilitating early detection of adverse events, and guiding regulatory decision-making. Traditional ADE detection methods are reliable but slow, not easily adaptable to large-scale operations, and offer limited information. With the exponential increase in data sources like social media content, biomedical literature, and Electronic Medical Records (EMR), extracting relevant ADE-related information from these unstructured texts is imperative. Previous ADE mining studies have focused on text-based methodologies, overlooking visual cues, limiting contextual comprehension, and hindering accurate interpretation. To address this gap, we present a MultiModal Adverse Drug Event (MMADE) detection dataset, merging ADE-related textual information with visual aids. Additionally, we introduce a framework that leverages the capabilities of LLMs and VLMs for ADE detection by generating detailed descriptions of medical images depicting ADEs, aiding healthcare professionals in visually identifying adverse events. Using our MMADE dataset, we showcase the significance of integrating visual cues from images to enhance overall performance. This approach holds promise for patient safety, ADE awareness, and healthcare accessibility, paving the way for further exploration in personalized healthcare.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.

北京阿比特科技有限公司