亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transformer-based neural networks have surpassed promising performance on many biomedical image segmentation tasks due to a better global information modeling from the self-attention mechanism. However, most methods are still designed for 2D medical images while ignoring the essential 3D volume information. The main challenge for 3D transformer-based segmentation methods is the quadratic complexity introduced by the self-attention mechanism \cite{vaswani2017attention}. In this paper, we propose a novel transformer architecture for 3D medical image segmentation using an encoder-decoder style architecture with linear complexity. Furthermore, we newly introduce a dynamic token concept to further reduce the token numbers for self-attention calculation. Taking advantage of the global information modeling, we provide uncertainty maps from different hierarchy stages. We evaluate this method on multiple challenging CT pancreas segmentation datasets. Our promising results show that our novel 3D Transformer-based segmentor could provide promising highly feasible segmentation performance and accurate uncertainty quantification using single annotation. Code is available //github.com/freshman97/LinTransUNet.

相關內容

圖(tu)像(xiang)(xiang)分(fen)(fen)割就是把(ba)(ba)圖(tu)像(xiang)(xiang)分(fen)(fen)成若(ruo)干個特定(ding)的、具有獨(du)特性(xing)(xing)質的區(qu)域(yu)并提出感(gan)興趣目標的技術(shu)和過程。它是由圖(tu)像(xiang)(xiang)處理到圖(tu)像(xiang)(xiang)分(fen)(fen)析的關鍵步驟。 所謂圖(tu)像(xiang)(xiang)分(fen)(fen)割指的是根據(ju)灰度、顏色(se)、紋理和形狀等特征把(ba)(ba)圖(tu)像(xiang)(xiang)劃(hua)分(fen)(fen)成若(ruo)干互不交迭的區(qu)域(yu),并使(shi)這些特征在同一區(qu)域(yu)內呈現出相似性(xing)(xing),而(er)在不同區(qu)域(yu)間呈現出明顯的差異性(xing)(xing)。

知識薈萃

精(jing)品入門和(he)進(jin)階教程、論文(wen)和(he)代(dai)碼整理等

更多

查看(kan)相關VIP內容、論文、資訊等

Semi-supervised medical image segmentation has attracted much attention in recent years because of the high cost of medical image annotations. In this paper, we propose a novel Inherent Consistent Learning (ICL) method, which aims to learn robust semantic category representations through the semantic consistency guidance of labeled and unlabeled data to help segmentation. In practice, we introduce two external modules namely Supervised Semantic Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL) that based on the attention mechanism to align the semantic category representations of labeled and unlabeled data, as well as update the global semantic representations over the entire training set. The proposed ICL is a plug-and-play scheme for various network architectures and the two modules are not involved in the testing stage. Experimental results on three public benchmarks show that the proposed method can outperform the state-of-the-art especially when the number of annotated data is extremely limited. Code is available at: //github.com/zhuye98/ICL.git.

The handling of long videos with complex and occluded sequences has recently emerged as a new challenge in the video instance segmentation (VIS) community. However, existing methods have limitations in addressing this challenge. We argue that the biggest bottleneck in current approaches is the discrepancy between training and inference. To effectively bridge this gap, we propose a Generalized framework for VIS, namely GenVIS, that achieves state-of-the-art performance on challenging benchmarks without designing complicated architectures or requiring extra post-processing. The key contribution of GenVIS is the learning strategy, which includes a query-based training pipeline for sequential learning with a novel target label assignment. Additionally, we introduce a memory that effectively acquires information from previous states. Thanks to the new perspective, which focuses on building relationships between separate frames or clips, GenVIS can be flexibly executed in both online and semi-online manner. We evaluate our approach on popular VIS benchmarks, achieving state-of-the-art results on YouTube-VIS 2019/2021/2022 and Occluded VIS (OVIS). Notably, we greatly outperform the state-of-the-art on the long VIS benchmark (OVIS), improving 5.6 AP with ResNet-50 backbone. Code is available at //github.com/miranheo/GenVIS.

The advent of Vision Transformer (ViT) has brought substantial advancements in 3D volumetric benchmarks, particularly in 3D medical image segmentation. Concurrently, Multi-Layer Perceptron (MLP) networks have regained popularity among researchers due to their comparable results to ViT, albeit with the exclusion of the heavy self-attention module. This paper introduces a permutable hybrid network for volumetric medical image segmentation, named PHNet, which exploits the advantages of convolution neural network (CNN) and MLP. PHNet addresses the intrinsic isotropy problem of 3D volumetric data by utilizing both 2D and 3D CNN to extract local information. Besides, we propose an efficient Multi-Layer Permute Perceptron module, named MLPP, which enhances the original MLP by obtaining long-range dependence while retaining positional information. Extensive experimental results validate that PHNet outperforms the state-of-the-art methods on two public datasets, namely, COVID-19-20 and Synapse. Moreover, the ablation study demonstrates the effectiveness of PHNet in harnessing the strengths of both CNN and MLP. The code will be accessible to the public upon acceptance.

Medical image segmentation has made significant progress in recent years. Deep learning-based methods are recognized as data-hungry techniques, requiring large amounts of data with manual annotations. However, manual annotation is expensive in the field of medical image analysis, which requires domain-specific expertise. To address this challenge, few-shot learning has the potential to learn new classes from only a few examples. In this work, we propose a novel framework for few-shot medical image segmentation, termed CAT-Net, based on cross masked attention Transformer. Our proposed network mines the correlations between the support image and query image, limiting them to focus only on useful foreground information and boosting the representation capacity of both the support prototype and query features. We further design an iterative refinement framework that refines the query image segmentation iteratively and promotes the support feature in turn. We validated the proposed method on three public datasets: Abd-CT, Abd-MRI, and Card-MRI. Experimental results demonstrate the superior performance of our method compared to state-of-the-art methods and the effectiveness of each component. we will release the source codes of our method upon acceptance.

DEtection TRansformer (DETR) started a trend that uses a group of learnable queries for unified visual perception. This work begins by applying this appealing paradigm to LiDAR-based point cloud segmentation and obtains a simple yet effective baseline. Although the naive adaptation obtains fair results, the instance segmentation performance is noticeably inferior to previous works. By diving into the details, we observe that instances in the sparse point clouds are relatively small to the whole scene and often have similar geometry but lack distinctive appearance for segmentation, which are rare in the image domain. Considering instances in 3D are more featured by their positional information, we emphasize their roles during the modeling and design a robust Mixed-parameterized Positional Embedding (MPE) to guide the segmentation process. It is embedded into backbone features and later guides the mask prediction and query update processes iteratively, leading to Position-Aware Segmentation (PA-Seg) and Masked Focal Attention (MFA). All these designs impel the queries to attend to specific regions and identify various instances. The method, named Position-guided Point cloud Panoptic segmentation transFormer (P3Former), outperforms previous state-of-the-art methods by 3.4% and 1.2% PQ on SemanticKITTI and nuScenes benchmark, respectively. The source code and models are available at //github.com/SmartBot-PJLab/P3Former .

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.

In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司