亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we aim to use different metrics in the Euclidean space and Sobolev type metrics in function spaces in order to produce reliable parameters for the differentiation of point distributions and dynamical systems. The main tool is the analysis of the geometrical evolution of the hypergraphs generated by the growth of the radial parameters for a choice of an appropriate metric in the space containing the data points. Once this geometric dynamics is obtained we use Lebesque and Sobolev type norms in order to compare the basic geometric signals obtained.

相關內容

Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.

Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.

The use of counterfactual explanations (CFXs) is an increasingly popular explanation strategy for machine learning models. However, recent studies have shown that these explanations may not be robust to changes in the underlying model (e.g., following retraining), which raises questions about their reliability in real-world applications. Existing attempts towards solving this problem are heuristic, and the robustness to model changes of the resulting CFXs is evaluated with only a small number of retrained models, failing to provide exhaustive guarantees. To remedy this, we propose {\Delta}-robustness, the first notion to formally and deterministically assess the robustness (to model changes) of CFXs for neural networks. We introduce an abstraction framework based on interval neural networks to verify the {\Delta}-robustness of CFXs against a possibly infinite set of changes to the model parameters, i.e., weights and biases. We then demonstrate the utility of this approach in two distinct ways. First, we analyse the {\Delta}-robustness of a number of CFX generation methods from the literature and show that they unanimously host significant deficiencies in this regard. Second, we demonstrate how embedding {\Delta}-robustness within existing methods can provide CFXs which are provably robust.

Intensive Care Units usually carry patients with a serious risk of mortality. Recent research has shown the ability of Machine Learning to indicate the patients' mortality risk and point physicians toward individuals with a heightened need for care. Nevertheless, healthcare data is often subject to privacy regulations and can therefore not be easily shared in order to build Centralized Machine Learning models that use the combined data of multiple hospitals. Federated Learning is a Machine Learning framework designed for data privacy that can be used to circumvent this problem. In this study, we evaluate the ability of deep Federated Learning to predict the risk of Intensive Care Unit mortality at an early stage. We compare the predictive performance of Federated, Centralized, and Local Machine Learning in terms of AUPRC, F1-score, and AUROC. Our results show that Federated Learning performs equally well as the centralized approach and is substantially better than the local approach, thus providing a viable solution for early Intensive Care Unit mortality prediction. In addition, we show that the prediction performance is higher when the patient history window is closer to discharge or death. Finally, we show that using the F1-score as an early stopping metric can stabilize and increase the performance of our approach for the task at hand.

For basic machine learning problems, expected error is used to evaluate model performance. Since the distribution of data is usually unknown, we can make simple hypothesis that the data are sampled independently and identically distributed (i.i.d.) and the mean value of loss function is used as the empirical risk by Law of Large Numbers (LLN). This is known as the Monte Carlo method. However, when LLN is not applicable, such as imbalanced data problems, empirical risk will cause overfitting and might decrease robustness and generalization ability. Inspired by the framework of nonlinear expectation theory, we substitute the mean value of loss function with the maximum value of subgroup mean loss. We call it nonlinear Monte Carlo method. In order to use numerical method of optimization, we linearize and smooth the functional of maximum empirical risk and get the descent direction via quadratic programming. With the proposed method, we achieve better performance than SOTA backbone models with less training steps, and more robustness for basic regression and imbalanced classification tasks.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

北京阿比特科技有限公司