亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Artificial Intelligence-Generated Content (AIGC) is an automated method for generating, manipulating, and modifying valuable and diverse data using AI algorithms creatively. This survey paper focuses on the deployment of AIGC applications, e.g., ChatGPT and Dall-E, at mobile edge networks, namely mobile AIGC networks, that provide personalized and customized AIGC services in real time while maintaining user privacy. We begin by introducing the background and fundamentals of generative models and the lifecycle of AIGC services at mobile AIGC networks, which includes data collection, training, finetuning, inference, and product management. We then discuss the collaborative cloud-edge-mobile infrastructure and technologies required to support AIGC services and enable users to access AIGC at mobile edge networks. Furthermore, we explore AIGCdriven creative applications and use cases for mobile AIGC networks. Additionally, we discuss the implementation, security, and privacy challenges of deploying mobile AIGC networks. Finally, we highlight some future research directions and open issues for the full realization of mobile AIGC networks.

相關內容

人工智能生成內容

Cloud, fog, and edge computing integration with future mobile Internet-of-Things (IoT) devices and related applications in 5G/6G networks will become more practical in the coming years. Containers became the de facto virtualization technique that replaced Virtual Memory (VM). Mobile IoT applications, e.g., intelligent transportation and augmented reality, incorporating fog-edge, have increased the demand for a millisecond-scale response and processing time. Edge Computing reduces remote network traffic and latency. These services must run on edge nodes that are physically close to devices. However, classical migration techniques may not meet the requirements of future mission-critical IoT applications. IoT mobile devices have limited resources for running multiple services, and client-server latency worsens when fog-edge services must migrate to maintain proximity in light of device mobility. This study analyzes the performance of the MiGrror migration method and the pre-copy live migration method when the migration of multiple VMs/containers is considered. This paper presents mathematical models for the stated methods and provides migration guidelines and comparisons for services to be implemented as multiple containers, as in microservice-based environments. Experiments demonstrate that MiGrror outperforms the pre-copy technique and, unlike conventional live migrations, can maintain less than 10 milliseconds of downtime and reduce migration time with a minimal bandwidth overhead. The results show that MiGrror can improve service continuity and availability for users. Most significant is that the model can use average and non-average values for different parameters during migration to achieve improved and more accurate results, while other research typically only uses average values. This paper shows that using only average parameter values in migration can lead to inaccurate results.

人工智能生成內容(AIGC)是一種使用人工智能算法創造性地生成、操作和修改有價值和多樣化數據的自動化方法。本文**重點研究了ChatGPT和Dall-E等AIGC應用在移動邊緣網絡(mobile AIGC networks)中的部署,這些應用在維護用戶隱私的同時,提供個性化和定制化的實時AIGC服務。**首先介紹了生成模型的背景和基本原理以及移動AIGC網絡的AIGC服務的生命周期,其中包括數據收集、訓練、微調、推理和產品管理。然后,討論了支持AIGC服務并使用戶能夠在移動邊緣網絡訪問AIGC所需的云邊-移動協同基礎設施和技術。探索了AIGC驅動的移動AIGC網絡的創意應用和用例。此外,還討論了部署移動AIGC網絡所面臨的實現、安全和隱私方面的挑戰。最后,指出了完全實現移動AIGC網絡的未來研究方向和開放問題。

//www.zhuanzhi.ai/paper/4db7f7a43d99cc11e86982637091dba0

1. 引言

圖1移動AIGC網絡概述,包括云層、邊緣層、D2D移動層。AIGC服務的生命周期,包括數據收集、預訓練、微調、推理和產品管理,在核心網絡和邊緣網絡之間循環。

**近年來,人工智能生成內容(artificial intelligence-generated content, AIGC)已成為一種生產、操作和修改數據的新方法。**通過利用AI技術,AIGC將內容生成與傳統的專業生成內容(PGC)和用戶生成內容(UGC)[1] -[3]一起自動化。隨著數據創建的邊際成本降低到幾乎為零,AIGC(例如ChatGPT)有望為人工智能發展和數字經濟提供大量合成數據,為社會提供顯著的生產力和經濟價值。人工智能技術的不斷進步,特別是在大規模和多模態模型[4],[5]領域,推動了AIGC能力的快速增長。這一進展的一個主要例子是DALL-E[6]的開發,這是一個基于OpenAI最先進的GPT-3語言模型的人工智能系統,由1750億個參數組成,旨在通過預測連續的像素來生成圖像。在其最新迭代DALL-E2[7]中,采用擴散模型來減少訓練過程中產生的噪聲,從而生成更精細和新穎的圖像。在使用AIGC模型生成文本到圖像的背景下,語言模型起著指導作用,增強了輸入提示和結果圖像之間的語義一致性。同時,AIGC模型處理現有的圖像屬性和組件,從現有數據集生成無限的合成圖像。

**基于具有數十億個參數的大規模預訓練模型,AIGC服務旨在增強知識和創造性工作領域,這些領域雇用了數十億人。**通過利用生成式人工智能,這些領域可以實現至少10%的內容創造效率提高,可能產生數萬億美元的經濟價值。AIGC可以應用于各種形式的文本生成,從實際應用(如客戶服務查詢和消息)到創造性任務(如活動跟蹤和營銷文案[9])。例如,OpenAI的ChatGPT[10]可以根據用戶提供的提示自動生成有社會價值的內容。通過與ChatGPT進行廣泛而連貫的對話,來自各行各業的人可以在調試代碼、發現健康食譜、編寫腳本和設計營銷活動方面尋求幫助。在圖像生成領域,AIGC模型可以根據現有圖像的屬性和成分處理現有圖像,實現端到端的圖像合成,如直接從現有的[7]圖像生成完整的圖像。此外,AIGC模型在跨模態生成方面具有巨大的潛力,因為它們可以在空間上處理現有的視頻屬性,并同時自動處理多個視頻片段[11]。

與PGC和UGC相比,AIGC在內容創造方面的優勢已經顯而易見。具體來說,生成式AI模型可以在幾秒鐘內產生高質量的內容,并提供為用戶需求量身定制的個性化內容[2]。隨著時間的推移,AIGC的性能得到了顯著提高,這是由增強的模型、增加的數據可用性和更大的計算能力[12]驅動的。一方面,先進的模型[4],如擴散模型,為跨模態AIGC生成提供了更強大的工具。這些進展歸功于生成式人工智能模型的基礎性研究,以及生成式深度神經網絡(DNN)中學習范式和網絡結構的不斷細化。另一方面,隨著網絡日益互聯,用于生成式人工智能訓練和推理的數據和計算能力變得更加容易獲得[9],[13]。例如,需要數千個GPU的AIGC模型可以在云數據中心進行訓練和執行,使用戶能夠通過核心網絡提交頻繁的數據生成請求。

盡管AIGC具有革新現有生產流程的潛力,但在移動設備上訪問AIGC服務的用戶目前缺乏對交互式和資源密集型數據生成服務[14],[25]的支持。首先,可以利用云數據中心強大的計算能力訓練AIGC預訓練模型,如用于ChatGPT的GPT-3和用于ChatGPT Plus的GPT-4。用戶通過在云服務器上執行AIGC模型,通過核心網絡訪問基于云的AIGC服務。然而,由于其遠程特性,云服務具有較高的延遲。因此,在移動邊緣網絡,即圖1所示的移動AIGC網絡上部署交互密集型的AIGC業務,應該是一個更實際的選擇[26]-[28]。具體而言,開發移動AIGC網絡的動機包括

低延遲:用戶可以訪問移動AIGC網絡[29]中的低延遲服務,而不是將AIGC服務請求定向到核心網內的云服務器。例如,用戶可以通過將預訓練模型下載到邊緣服務器和移動設備進行微調和推理,直接在無線接入網絡(RANs)中獲得AIGC服務,從而支持實時、交互式的AIGC。

本地化和移動性:在移動AIGC網絡中,在網絡邊緣設有計算服務器的基站可以通過本地化服務請求[30]、[31]來微調預訓練模型。此外,用戶的位置可以作為AIGC微調和推理的輸入,解決特定的地理需求。此外,用戶移動性可以集成到AIGC服務提供過程中,實現動態、可靠的AIGC服務提供。

自定義和個性化:本地邊緣服務器可以適應本地用戶需求,允許用戶根據自己的偏好請求個性化服務,同時根據本地服務環境提供定制化服務。一方面,邊緣服務器通過對AIGC服務[2]進行相應微調,可以根據本地用戶群體的需求定制AIGC服務;另一方面,用戶可以通過指定偏好向邊緣服務器請求個性化服務。

隱私和安全:AIGC用戶只需要向邊緣服務器提交服務請求,而不需要將偏好發送到核心網絡內的云服務器。因此,AIGC用戶的隱私和安全可以在AIGC服務的提供過程中得到保護,包括服務的微調和推斷。

如圖1所示,當用戶通過邊緣服務器和移動設備在移動邊緣網絡上訪問AIGC服務時,有限的計算、通信和存儲資源為交付交互式和資源密集型的AIGC服務帶來了挑戰。首先,邊緣服務器上的資源分配必須權衡邊緣服務器AIGC服務的準確性、延遲和能耗。此外,計算密集型的AIGC任務可以從移動設備卸載到邊緣服務器,提高推理延遲和服務可靠性。此外,生成內容的AI模型可以被緩存在邊緣網絡中,類似于內容分發網絡(CDN)[32],[33],以減少訪問模型的延遲。最后,探索移動性管理和激勵機制,在空間和時間上鼓勵用戶參與。與傳統人工智能相比,AIGC技術需要算法的整體技術成熟度、透明性、魯棒性、公正性和洞察力,才能有效地應用于實際。從可持續性的角度來看,AIGC可以使用現有的和合成的數據集作為生成新數據的原材料。然而,當有偏數據被用作原始數據時,這些偏差會持續存在于模型的知識中,這不可避免地導致算法的結果不公平。最后,靜態AIGC模型主要依賴模板來生成機器生成的內容,這些內容可能具有類似的文本和輸出結構。

本文概述了與AIGC和移動邊緣智能相關的研究活動,如圖2所示。鑒于人們對AIGC的興趣日益增加,最近發表了一些相關主題的調研報告。表一列出了這些調查與本文的比較。

**[34]中的研究提供了研究人員和行業發表的當前AIGC模型的全面概述。**作者確定了9個類別,總結了生成式人工智能模型的演變,包括文本到文本、文本到圖像、文本到音頻、文本到視頻、文本到3D、文本到代碼、文本到科學、圖像到文本和其他模型。此外,他們揭示,只有6個具有巨大計算能力和高技能和經驗豐富的團隊可以部署這些最先進的模型,這甚至比類別的數量還要少。按照[34]中開發的生成式AI模型的分類法,其他調研隨后詳細討論了生成式AI模型。在[9]中的研究檢查了現有的生成文本和檢測模型的方法。[18]的研究提供了多模態圖像合成和處理的主要方法、數據集和評估指標的全面概述。[24]的研究基于語音和圖像合成技術,總結了現有的基于深度生成模型的同步語音手勢生成工作。在[16]上的研究探討了與人工智能生成音樂相關的版權法,其中包括人工智能工具、開發者、用戶和公共領域之間的復雜交互。[4]中的研究為高級生成模型提供了全面的指導和比較,包括GAN、基于能量的模型、變分自編碼器(VAE)、自回歸模型、基于流的模型和擴散模型。隨著擴散模型在產生創造性數據方面受到廣泛關注,對[21]的研究給出了擴散模型的基本算法和全面分類。基于這些算法,作者[1]從藝術分析人工智能和藝術創作人工智能兩個角度闡述了藝術與人工智能的互動。此外,作者還在[2]中討論了在元宇宙中應用計算藝術來創建超現實的網絡空間。

圖3:本次調研的大綱,介紹了移動邊緣網絡的AIGC服務提供,并強調了移動邊緣網絡在提供AIGC服務方面的一些基本實現挑戰。

在6G[19]中,針對智能移動網絡,引入了基于邊緣計算系統的移動邊緣智能,包括邊緣緩存、邊緣計算和邊緣智能。[17]研究探討了分布式學習在無線網絡中的部署。研究[15]為聯邦學習提供了指南,并對在移動邊緣網絡中實現聯邦學習(FL)進行了全面概述。作者詳細分析了實現FL所面臨的挑戰,包括通信成本、資源分配、隱私和安全。在[12]中,詳細介紹了邊緣智能和智能邊緣的各種應用場景和技術。此外,[20]研究還討論了6G無線網絡低功耗、低延遲、可靠可信邊緣智能的前景和潛力。[22]研究探索了區塊鏈技術如何用于實現邊緣智能,以及邊緣智能如何支持區塊鏈在移動邊緣網絡的部署。對區塊鏈驅動的邊緣智能、邊緣智能友好的區塊鏈及其在移動邊緣網絡中的實現進行了全面的綜述。[23]還提供了在移動邊緣網絡實現元宇宙的愿景。詳細討論了使能技術和挑戰,包括通信與網絡、計算和區塊鏈。

與現有的調研和教程不同,本文的調研集中于移動AIGC網絡的部署,以提供實時和隱私保護的AIGC服務。介紹了移動邊緣網絡中AIGC和協同基礎設施的發展現狀。隨后,介紹了深度生成模型技術以及在移動AIGC網絡中提供AIGC服務的工作流程。此外,還展示了創造性的應用程序和幾個示范用例。確定了移動AIGC網絡部署的實現挑戰,從資源分配到安全和隱私**。我們的調研貢獻如下**。

-我們首先提供一個教程,建立AIGC服務的定義、生命周期、模型和指標。然后,提出了移動AIGC網絡,即在移動邊緣網絡上提供AIGC服務,與移動邊緣-云協作的通信、計算和存儲基礎設施。

-介紹了移動AIGC網絡中的幾個用例,包括用于文本、圖像、視頻和3D內容生成的創造性AIGC應用程序。總結了基于這些用例構建移動AIGC網絡的優勢。

-確定了實現移動AIGC網絡的關鍵實現挑戰。移動AIGC網絡的實施挑戰不僅來自于動態的信道條件,還來自于AIGC服務中無意義內容、不安全內容規則和隱私泄露。

-最后,分別從網絡與計算、機器學習(ML)和實際實現考慮等角度討論了未來的研究方向和開放問題。

如圖3所示,調研的組織如下。第二節考察了AIGC的背景和基礎。第三部分介紹了移動AIGC網絡的技術和協作基礎設施。第四節討論了移動AIGC網絡的應用和優勢,第五節展示了潛在的用例。第六節討論了實現中的挑戰。第七部分探討了未來的研究方向。第八節提出結論。

付費5元查看完整內容

As ChatGPT goes viral, generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond. With such overwhelming media coverage, it is almost impossible for us to miss the opportunity to glimpse AIGC from a certain angle. In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks. Impressed by the capability of the ChatGPT, many people are wondering about its limits: can GPT-5 (or other future GPT variants) help ChatGPT unify all AIGC tasks for diversified content creation? Toward answering this question, a comprehensive review of existing AIGC tasks is needed. As such, our work comes to fill this gap promptly by offering a first look at AIGC, ranging from its techniques to applications. Modern generative AI relies on various technical foundations, ranging from model architecture and self-supervised pretraining to generative modeling methods (like GAN and diffusion models). After introducing the fundamental techniques, this work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc., which depicts the full potential of ChatGPT's future. Moreover, we summarize their significant applications in some mainstream industries, such as education and creativity content. Finally, we discuss the challenges currently faced and present an outlook on how generative AI might evolve in the near future.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

北京阿比特科技有限公司