Process mining is a well-established discipline of data analysis focused on the discovery of process models from information systems' event logs. Recently, an emerging subarea of process mining - stochastic process discovery has started to evolve. Stochastic process discovery considers frequencies of events in the event data and allows for more comprehensive analysis. In particular, when durations of activities are presented in the event log, performance characteristics of the discovered stochastic models can be analyzed, e.g., the overall process execution time can be estimated. Existing performance analysis techniques usually discover stochastic process models from event data and then simulate these models to evaluate their execution times. These methods rely on empirical approaches. This paper proposes analytical techniques for performance analysis allowing for the derivation of statistical characteristics of the overall processes' execution times in the presence of arbitrary time distributions of events modeled by semi-Markov processes. The proposed methods can significantly simplify the what-if analysis of processes by providing solutions without resorting to simulation.
Improving the reliability of deployed machine learning systems often involves developing methods to detect out-of-distribution (OOD) inputs. However, existing research often narrowly focuses on samples from classes that are absent from the training set, neglecting other types of plausible distribution shifts. This limitation reduces the applicability of these methods in real-world scenarios, where systems encounter a wide variety of anomalous inputs. In this study, we categorize five distinct types of distribution shifts and critically evaluate the performance of recent OOD detection methods on each of them. We publicly release our benchmark under the name BROAD (Benchmarking Resilience Over Anomaly Diversity). Our findings reveal that while these methods excel in detecting unknown classes, their performance is inconsistent when encountering other types of distribution shifts. In other words, they only reliably detect unexpected inputs that they have been specifically designed to expect. As a first step toward broad OOD detection, we learn a generative model of existing detection scores with a Gaussian mixture. By doing so, we present an ensemble approach that offers a more consistent and comprehensive solution for broad OOD detection, demonstrating superior performance compared to existing methods. Our code to download BROAD and reproduce our experiments is publicly available.
Mixed-precision neural networks (MPNNs) that enable the use of just enough data width for a deep learning task promise significant advantages of both inference accuracy and computing overhead. FPGAs with fine-grained reconfiguration capability can adapt the processing with distinct data width and models, and hence, can theoretically unleash the potential of MPNNs. Nevertheless, commodity DPUs on FPGAs mostly emphasize generality and have limited support for MPNNs especially the ones with lower data width. In addition, primitive DSPs in FPGAs usually have much larger data width than that is required by MPNNs and haven't been sufficiently co-explored with MPNNs yet. To this end, we propose an open source MPNN accelerator design framework specifically tailored for FPGAs. In this framework, we have a systematic DSP-packing algorithm to pack multiple lower data width MACs in a single primitive DSP and enable efficient implementation of MPNNs. Meanwhile, we take DSP packing efficiency into consideration with MPNN quantization within a unified neural network architecture search (NAS) framework such that it can be aware of the DSP overhead during quantization and optimize the MPNN performance and accuracy concurrently. Finally, we have the optimized MPNN fine-tuned to a fully pipelined neural network accelerator template based on HLS and make best use of available resources for higher performance. Our experiments reveal the resulting accelerators produced by the proposed framework can achieve overwhelming advantages in terms of performance, resource utilization, and inference accuracy for MPNNs when compared with both handcrafted counterparts and prior hardware-aware neural network accelerators on FPGAs.
For many data-processing applications, a comprehensive set of efficient operations for the management of priority values is required. Indexed priority queues are particularly promising to satisfy this requirement by design. In this work, we report the design and analysis of an efficient indexed priority queue with a comprehensive set of operations. In particular, $\mathtt{insert}$, $\mathtt{delete}$ and $\mathtt{decrease}$ all run in expected $O(\log^{*}{n})$ time, while $\mathtt{increase}$ is conjectured by means of Monte Carlo simulations to run in expected $O(\log\log{n})$ time. The space complexity as well as the time complexity for the construction of the empty heap data structure is $O(n)$. For certain massive computational problems, such as specific analyses of extremely large graphs and (chemical) simulations, this heap system may exhibit considerable utility.
Self-supervised learning with masked autoencoders has recently gained popularity for its ability to produce effective image or textual representations, which can be applied to various downstream tasks without retraining. However, we observe that the current masked autoencoder models lack good generalization ability on graph data. To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE. Different from existing masked autoencoders that learn node presentations by explicitly reconstructing the original graph components (e.g., features or edges), in this paper, we propose to collaboratively reconstruct informative and integrated latent embeddings. By considering embeddings encompassing graph topology and attribute information as reconstruction targets, our model could capture more generalized and comprehensive knowledge. Furthermore, we introduce a mutual information based reconstruction loss that enables the effective reconstruction of multiple targets. This learning objective allows us to differentiate between the exclusive knowledge learned from a single target and common knowledge shared by multiple targets. We evaluate our method on three downstream tasks with seven datasets as benchmarks. Extensive experiments demonstrate the superiority of GiGaMAE against state-of-the-art baselines. We hope our results will shed light on the design of foundation models on graph-structured data. Our code is available at: //github.com/sycny/GiGaMAE.
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community.
Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous published state-of-the-art single-model results of panoptic segmentation on MS COCO test-dev split and semantic segmentation on ADE20K val split with 55.2% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNN on MS COCO with 60%-90% faster inference speeds. Code and models will be released at //github.com/ZwwWayne/K-Net/.
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.