亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A group of $n$ agents with numerical preferences for each other are to be assigned to the $n$ seats of a dining table. We study two natural topologies:~circular (cycle) tables and panel (path) tables. For a given seating arrangement, an agent's utility is the sum of their preference values towards their (at most two) direct neighbors. An arrangement is envy-free if no agent strictly prefers someone else's seat, and it is stable if no two agents strictly prefer each other's seats. Recently, it was shown that for both paths and cycles it is NP-hard to decide whether an envy-free arrangement exists, even for symmetric binary preferences. In contrast, we show that, if agents come from a bounded number of classes, the problem is solvable in polynomial time for arbitrarily-valued possibly asymmetric preferences, including outputting an arrangement if possible. We also give simpler proofs of the previous hardness results if preferences are allowed to be asymmetric. For stability, it is known that deciding the existence of stable arrangements is NP-hard for both topologies, but only if sufficiently-many numerical values are allowed. As it turns out, even constructing unstable instances can be challenging in certain cases, e.g., binary values. We completely characterize the existence of stable arrangements based on the number of distinct values in the preference matrix and the number of agent classes. We also ask the same question for non-negative values and give an almost-complete characterization, the most interesting outstanding case being that of paths with two-valued non-negative preferences, for which we experimentally find that stable arrangements always exist and prove it under the additional constraint that agents can only swap seats when sitting at most two positions away. We moreover give a polynomial algorithm for determining a stable arrangement assuming a bounded number of classes.

相關內容

Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.

Cycles are fundamental elements in graph-structured data and have demonstrated their effectiveness in enhancing graph learning models. To encode such information into a graph learning framework, prior works often extract a summary quantity, ranging from the number of cycles to the more sophisticated persistence diagram summaries. However, more detailed information, such as which edges are encoded in a cycle, has not yet been used in graph neural networks. In this paper, we make one step towards addressing this gap, and propose a structure encoding module, called CycleNet, that encodes cycle information via edge structure encoding in a permutation invariant manner. To efficiently encode the space of all cycles, we start with a cycle basis (i.e., a minimal set of cycles generating the cycle space) which we compute via the kernel of the 1-dimensional Hodge Laplacian of the input graph. To guarantee the encoding is invariant w.r.t. the choice of cycle basis, we encode the cycle information via the orthogonal projector of the cycle basis, which is inspired by BasisNet proposed by Lim et al. We also develop a more efficient variant which however requires that the input graph has a unique shortest cycle basis. To demonstrate the effectiveness of the proposed module, we provide some theoretical understandings of its expressive power. Moreover, we show via a range of experiments that networks enhanced by our CycleNet module perform better in various benchmarks compared to several existing SOTA models.

Emerging from the monolithic pairwise attention mechanism in conventional Transformer models, there is a growing interest in leveraging sparse interactions that align more closely with biological principles. Approaches including the Set Transformer and the Perceiver employ cross-attention consolidated with a latent space that forms an attention bottleneck with limited capacity. Building upon recent neuroscience studies of Global Workspace Theory and associative memory, we propose the Associative Transformer (AiT). AiT induces low-rank explicit memory that serves as both priors to guide bottleneck attention in the shared workspace and attractors within associative memory of a Hopfield network. Through joint end-to-end training, these priors naturally develop module specialization, each contributing a distinct inductive bias to form attention bottlenecks. A bottleneck can foster competition among inputs for writing information into the memory. We show that AiT is a sparse representation learner, learning distinct priors through the bottlenecks that are complexity-invariant to input quantities and dimensions. AiT demonstrates its superiority over methods such as the Set Transformer, Vision Transformer, and Coordination in various vision tasks.

Koopman representations aim to learn features of nonlinear dynamical systems (NLDS) which lead to linear dynamics in the latent space. Theoretically, such features can be used to simplify many problems in modeling and control of NLDS. In this work we study autoencoder formulations of this problem, and different ways they can be used to model dynamics, specifically for future state prediction over long horizons. We discover several limitations of predicting future states in the latent space and propose an inference-time mechanism, which we refer to as Periodic Reencoding, for faithfully capturing long term dynamics. We justify this method both analytically and empirically via experiments in low and high dimensional NLDS.

Diffusion generative models unlock new possibilities for inverse problems as they allow for the incorporation of strong empirical priors into the process of scientific inference. Recently, diffusion models received significant attention for solving inverse problems by posterior sampling, but many challenges remain open due to the intractability of this sampling process. Prior work resorted to Gaussian approximations to conditional densities of the reverse process, leveraging Tweedie's formula to parameterise its mean, complemented with various heuristics. In this work, we leverage higher order information using Tweedie's formula and obtain a finer approximation with a principled covariance estimate. This novel approximation removes any time-dependent step-size hyperparameters required by earlier methods, and enables higher quality approximations of the posterior density which results in better samples. Specifically, we tackle noisy linear inverse problems and obtain a novel approximation to the gradient of the likelihood. We then plug this gradient estimate into various diffusion models and show that this method is optimal for a Gaussian data distribution. We illustrate the empirical effectiveness of our approach for general linear inverse problems on toy synthetic examples as well as image restoration using pretrained diffusion models as the prior. We show that our method improves the sample quality by providing statistically principled approximations to diffusion posterior sampling problem.

Given a graph $G$, a community structure $\mathcal{C}$, and a budget $k$, the fair influence maximization problem aims to select a seed set $S$ ($|S|\leq k$) that maximizes the influence spread while narrowing the influence gap between different communities. While various fairness notions exist, the welfare fairness notion, which balances fairness level and influence spread, has shown promising effectiveness. However, the lack of efficient algorithms for optimizing the welfare fairness objective function restricts its application to small-scale networks with only a few hundred nodes. In this paper, we adopt the objective function of welfare fairness to maximize the exponentially weighted summation over the influenced fraction of all communities. We first introduce an unbiased estimator for the fractional power of the arithmetic mean. Then, by adapting the reverse influence sampling (RIS) approach, we convert the optimization problem to a weighted maximum coverage problem. We also analyze the number of reverse reachable sets needed to approximate the fair influence at a high probability. Further, we present an efficient algorithm that guarantees $1-1/e - \varepsilon$ approximation.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司