In this work, we introduce an advanced thermo-active variable impedance module which builds upon our previous innovation in thermal-based impedance adjustment for actuation systems. Our initial design harnessed the temperature-responsive, viscoelastic properties of Polycaprolactone (PCL) to modulate stiffness and damping, facilitated by integrated flexible Peltier elements. While effective, the reliance on compressing and the inherent stress relaxation characteristics of PCL led to suboptimal response times in impedance adjustments. Addressing these limitations, the current iteration of our module pivots to a novel 'shear-mode' operation. By conducting comprehensive shear rheology analyses on PCL, we have identified a configuration that eliminates the viscoelastic delay, offering a faster response with improved heat transfer efficiency. A key advantage of our module lies in its scalability and elimination of additional mechanical actuators for impedance adjustment. The compactness and efficiency of thermal actuation through Peltier elements allow for significant downsizing, making these thermal, variable impedance modules exceptionally well-suited for applications where space constraints and actuator weight are critical considerations. This development represents a significant leap forward in the design of variable impedance actuators, offering a more versatile, responsive, and compact solution for a wide range of robotic and biomechanical applications.
In this work, we will give proper estimates for the discrete convolution complementary (DCC) kernels, which leads to the asymptotically compatible fractional Gr\"onwall inequality. The consequence can be applied in the analysis of the stability and pointwise-in-time error of difference-type schemes on a non-uniform mesh. The pointwise error is explicitly bound when a non-uniform time grid is given by a specific scale function e.g. graded mesh, can be given directly. Numerical experiments towards the conclusion of this work validate the error analysis.
In this paper, we present a different way to use two modalities, in which either one modality or the other is seen by a single model. This can be useful when adapting an unimodal model to leverage more information while respecting a limited computational budget. This would mean having a single model that is able to deal with any modalities. To describe this, we coined the term anymodal learning. An example of this, is a use case where, surveillance in a room when the lights are off would be much more valuable using an infrared modality while a visible one would provide more discriminative information when lights are on. This work investigates how to efficiently leverage visible and infrared/thermal modalities for transformer-based object detection backbone to create an anymodal architecture. Our work does not create any inference overhead during the testing while exploring an effective way to exploit the two modalities during the training. To accomplish such a task, we introduce the novel anymodal training technique: Mixed Patches (MiPa), in conjunction with a patch-wise domain agnostic module, which is responsible of learning the best way to find a common representation of both modalities. This approach proves to be able to balance modalities by reaching competitive results on individual modality benchmarks with the alternative of using an unimodal architecture on three different visible-infrared object detection datasets. Finally, our proposed method, when used as a regularization for the strongest modality, can beat the performance of multimodal fusion methods while only requiring a single modality during inference. Notably, MiPa became the state-of-the-art on the LLVIP visible/infrared benchmark. Code: //github.com/heitorrapela/MiPa
In this paper, we investigate the dynamic emergence of traffic order in a distributed multi-agent system, aiming to minimize inefficiencies that stem from unnecessary structural impositions. We introduce a methodology for developing a dynamically-updating traffic pattern map of the airspace by leveraging information about the consistency and frequency of flow directions used by current as well as preceding traffic. Informed by this map, an agent can discern the degree to which it is advantageous to follow traffic by trading off utilities such as time and order. We show that for the traffic levels studied, for low degrees of traffic-following behavior, there is minimal penalty in terms of aircraft travel times while improving the overall orderliness of the airspace. On the other hand, heightened traffic-following behavior may result in increased aircraft travel times, while marginally reducing the overall entropy of the airspace. Ultimately, the methods and metrics presented in this paper can be used to optimally and dynamically adjust an agent's traffic-following behavior based on these trade-offs.
In this paper, we investigate a new problem called narrative action evaluation (NAE). NAE aims to generate professional commentary that evaluates the execution of an action. Unlike traditional tasks such as score-based action quality assessment and video captioning involving superficial sentences, NAE focuses on creating detailed narratives in natural language. These narratives provide intricate descriptions of actions along with objective evaluations. NAE is a more challenging task because it requires both narrative flexibility and evaluation rigor. One existing possible solution is to use multi-task learning, where narrative language and evaluative information are predicted separately. However, this approach results in reduced performance for individual tasks because of variations between tasks and differences in modality between language information and evaluation information. To address this, we propose a prompt-guided multimodal interaction framework. This framework utilizes a pair of transformers to facilitate the interaction between different modalities of information. It also uses prompts to transform the score regression task into a video-text matching task, thus enabling task interactivity. To support further research in this field, we re-annotate the MTL-AQA and FineGym datasets with high-quality and comprehensive action narration. Additionally, we establish benchmarks for NAE. Extensive experiment results prove that our method outperforms separate learning methods and naive multi-task learning methods. Data and code are released at //github.com/shiyi-zh0408/NAE_CVPR2024.
In this work, we present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction. Using medical images of the Open Knowledge-Based Planning Challenge dataset, we found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training. This was achieved only after reformulating the original loss function for a stable implementation. We found that (i)epistemic uncertainty was highly correlated with prediction errors, with various association indices comparable or stronger than those for Monte-Carlo Dropout and Deep Ensemble methods, (ii)the median error varied with uncertainty threshold much more linearly for epistemic uncertainty in Deep Evidential Learning relative to these other two conventional frameworks, indicative of a more uniformly calibrated sensitivity to model errors, (iii)relative to epistemic uncertainty, aleatoric uncertainty demonstrated a more significant shift in its distribution in response to Gaussian noise added to CT intensity, compatible with its interpretation as reflecting data noise. Collectively, our results suggest that Deep Evidential Learning is a promising approach that can endow deep-learning models in radiotherapy dose prediction with statistical robustness. Towards enhancing its clinical relevance, we demonstrate how we can use such a model to construct the predicted Dose-Volume-Histograms' confidence intervals.
In this paper we argue that conventional unitary-invariant measures of recommender system (RS) performance based on measuring differences between predicted ratings and actual user ratings fail to assess fundamental RS properties. More specifically, posing the optimization problem as one of predicting exact user ratings provides only an indirect suboptimal approximation for what RS applications typically need, which is an ability to accurately predict user preferences. We argue that scalar measures such as RMSE and MAE with respect to differences between actual and predicted ratings are only proxies for measuring RS ability to accurately estimate user preferences. We propose what we consider to be a measure that is more fundamentally appropriate for assessing RS performance, rank-preference consistency, which simply counts the number of prediction pairs that are inconsistent with the user's expressed product preferences. For example, if an RS predicts the user will prefer product A over product B, but the user's withheld ratings indicate s/he prefers product B over A, then rank-preference consistency has been violated. Our test results conclusively demonstrate that methods tailored to optimize arbitrary measures such as RMSE are not generally effective at accurately predicting user preferences. Thus, we conclude that conventional methods used for assessing RS performance are arbitrary and misleading.
Data-driven predictions are often perceived as inaccurate in hindsight due to behavioral responses. In this study, we explore the role of interface design choices in shaping individuals' decision-making processes in response to predictions presented on a shared information display in a strategic setting. We introduce a novel staged experimental design to investigate the effects of design features, such as visualizations of prediction uncertainty and error, within a repeated congestion game. In this game, participants assume the role of taxi drivers and use a shared information display to decide where to search for their next ride. Our experimental design endows agents with varying level-$k$ depths of thinking, allowing some agents to possess greater sophistication in anticipating the decisions of others using the same information display. Through several extensive experiments, we identify trade-offs between displays that optimize individual decisions and those that best serve the collective social welfare of the system. We find that the influence of display characteristics varies based on an agent's strategic sophistication. We observe that design choices promoting individual-level decision-making can lead to suboptimal system outcomes, as manifested by a lower realization of potential social welfare. However, this decline in social welfare is offset by a reduction in the distribution shift, narrowing the gap between predicted and realized system outcomes, which potentially enhances the perceived reliability and trustworthiness of the information display post hoc. Our findings pave the way for new research questions concerning the design of effective prediction interfaces in strategic environments.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.