亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges in developing applicable RL algorithms: satisfying safety constraints and efficiently learning with limited samples. To guarantee safety in real-world complex environments, we use the safe set algorithm (SSA) to monitor and modify the nominal controls, and evaluate SSA+RL in a clustered dynamic environment which is challenging to be solved by existing RL algorithms. However, the SSA+RL framework is usually not sample-efficient especially in reward-sparse environments, which has not been addressed in previous safe RL works. To improve the learning efficiency, we propose three techniques: (1) avoiding behaving overly conservative by adapting the SSA; (2) encouraging safe exploration using random network distillation with safety constraints; (3) improving policy convergence by treating SSA as expert demonstrations and directly learn from that. The experimental results show that our framework can achieve better safety performance compare to other safe RL methods during training and solve the task with substantially fewer episodes. Project website: //hychen-naza.github.io/projects/Safe_RL/.

相關內容

Reinforcement learning (RL) exhibits impressive performance when managing complicated control tasks for robots. However, its wide application to physical robots is limited by the absence of strong safety guarantees. To overcome this challenge, this paper explores the control Lyapunov barrier function (CLBF) to analyze the safety and reachability solely based on data without explicitly employing a dynamic model. We also proposed the Lyapunov barrier actor-critic (LBAC), a model-free RL algorithm, to search for a controller that satisfies the data-based approximation of the safety and reachability conditions. The proposed approach is demonstrated through simulation and real-world robot control experiments, i.e., a 2D quadrotor navigation task. The experimental findings reveal this approach's effectiveness in reachability and safety, surpassing other model-free RL methods.

We study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal robust policy purely from an offline dataset that can perform well in perturbed environments. We propose a generic algorithm framework \underline{D}oubly \underline{P}essimistic \underline{M}odel-based \underline{P}olicy \underline{O}ptimization ($\texttt{P}^2\texttt{MPO}$) for robust offline RL, which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. The \emph{double pessimism} principle is crucial to overcome the distributional shift incurred by i) the mismatch between behavior policy and the family of target policies; and ii) the perturbation of the nominal model. Under certain accuracy assumptions on the model estimation subroutine, we show that $\texttt{P}^2\texttt{MPO}$ is provably efficient with \emph{robust partial coverage data}, which means that the offline dataset has good coverage of the distributions induced by the optimal robust policy and perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples including tabular Robust Markov Decision Process (RMDP), factored RMDP, and RMDP with kernel and neural function approximations, we show that $\texttt{P}^2\texttt{MPO}$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the number of trajectories in the offline dataset. Notably, these models, except for the tabular case, are first identified and proven tractable by this paper. To the best of our knowledge, we first propose a general learning principle -- double pessimism -- for robust offline RL and show that it is provably efficient in the context of general function approximations.

We apply reinforcement learning (RL) to robotics tasks. One of the drawbacks of traditional RL algorithms has been their poor sample efficiency. One approach to improve the sample efficiency is model-based RL. In our model-based RL algorithm, we learn a model of the environment, essentially its transition dynamics and reward function, use it to generate imaginary trajectories and backpropagate through them to update the policy, exploiting the differentiability of the model. Intuitively, learning more accurate models should lead to better model-based RL performance. Recently, there has been growing interest in developing better deep neural network based dynamics models for physical systems, by utilizing the structure of the underlying physics. We focus on robotic systems undergoing rigid body motion without contacts. We compare two versions of our model-based RL algorithm, one which uses a standard deep neural network based dynamics model and the other which uses a much more accurate, physics-informed neural network based dynamics model. We show that, in model-based RL, model accuracy mainly matters in environments that are sensitive to initial conditions, where numerical errors accumulate fast. In these environments, the physics-informed version of our algorithm achieves significantly better average-return and sample efficiency. In environments that are not sensitive to initial conditions, both versions of our algorithm achieve similar average-return, while the physics-informed version achieves better sample efficiency. We also show that, in challenging environments, physics-informed model-based RL achieves better average-return than state-of-the-art model-free RL algorithms such as Soft Actor-Critic, as it computes the policy-gradient analytically, while the latter estimates it through sampling.

Despite the tremendous success of Reinforcement Learning (RL) algorithms in simulation environments, applying RL to real-world applications still faces many challenges. A major concern is safety, in another word, constraint satisfaction. State-wise constraints are one of the most common constraints in real-world applications and one of the most challenging constraints in Safe RL. Enforcing state-wise constraints is necessary and essential to many challenging tasks such as autonomous driving, robot manipulation. This paper provides a comprehensive review of existing approaches that address state-wise constraints in RL. Under the framework of State-wise Constrained Markov Decision Process (SCMDP), we will discuss the connections, differences, and trade-offs of existing approaches in terms of (i) safety guarantee and scalability, (ii) safety and reward performance, and (iii) safety after convergence and during training. We also summarize limitations of current methods and discuss potential future directions.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司