Learned indexes fit machine learning (ML) models to the data and use them to make query operations more time and space-efficient. Recent works propose using learned spatial indexes to improve spatial query performance by optimizing the storage layout or internal search structures according to the data distribution. However, only a few learned indexes exploit the query workload distribution to enhance their performance. In addition, building and updating learned spatial indexes are often costly on large datasets due to the inefficiency of (re)training ML models. In this paper, we present WaZI, a learned and workload-aware variant of the Z-index, which jointly optimizes the storage layout and search structures, as a viable solution for the above challenges of spatial indexing. Specifically, we first formulate a cost function to measure the performance of a Z-index on a dataset for a range-query workload. Then, we optimize the Z-index structure by minimizing the cost function through adaptive partitioning and ordering for index construction. Moreover, we design a novel page-skipping mechanism to improve the query performance of WaZI by reducing access to irrelevant data pages. Our extensive experiments show that the WaZI index improves range query time by 40% on average over the baselines while always performing better or comparably to state-of-the-art spatial indexes. Additionally, it also maintains good point query performance. Generally, WaZI provides favorable tradeoffs among query latency, construction time, and index size.
Recent advances in deep learning are driven by the growing scale of computation, data, and models. However, efficiently training large-scale models on distributed systems requires an intricate combination of data, operator, and pipeline parallelism, which exerts heavy burden on machine learning practitioners. To this end, we propose AutoDDL, a distributed training framework that automatically explores and exploits new parallelization schemes with near-optimal bandwidth cost. AutoDDL facilitates the description and implementation of different schemes by utilizing OneFlow's Split, Broadcast, and Partial Sum (SBP) abstraction. AutoDDL is equipped with an analytical performance model combined with a customized Coordinate Descent algorithm, which significantly reduces the scheme searching overhead. We conduct evaluations on Multi-Node-Single-GPU and Multi-Node-Multi-GPU machines using different models, including VGG and Transformer. Compared to the expert-optimized implementations, AutoDDL reduces the end-to-end training time by up to 31.1% and 10% for Transformer and up to 17.7% and 71.5% for VGG on the two parallel systems, respectively.
Neural network interatomic potentials (NNPs) have recently proven to be powerful tools to accurately model complex molecular systems while bypassing the high numerical cost of ab-initio molecular dynamics simulations. In recent years, numerous advances in model architectures as well as the development of hybrid models combining machine-learning (ML) with more traditional, physically-motivated, force-field interactions have considerably increased the design space of ML potentials. In this paper, we present FeNNol, a new library for building, training and running force-field-enhanced neural network potentials. It provides a flexible and modular system for building hybrid models, allowing to easily combine state-of-the-art embeddings with ML-parameterized physical interaction terms without the need for explicit programming. Furthermore, FeNNol leverages the automatic differentiation and just-in-time compilation features of the Jax Python library to enable fast evaluation of NNPs, shrinking the performance gap between ML potentials and standard force-fields. This is demonstrated with the popular ANI-2x model reaching simulation speeds nearly on par with the AMOEBA polarizable force-field on commodity GPUs (GPU=Graphics processing unit). We hope that FeNNol will facilitate the development and application of new hybrid NNP architectures for a wide range of molecular simulation problems.
Machine learning (ML) techniques have been applied to high-level synthesis (HLS) flows for quality-of-result (QoR) prediction and design space exploration (DSE). Nevertheless, the scarcity of accessible high-quality HLS datasets and the complexity of building such datasets present challenges. Existing datasets have limitations in terms of benchmark coverage, design space enumeration, vendor extensibility, or lack of reproducible and extensible software for dataset construction. Many works also lack user-friendly ways to add more designs, limiting wider adoption of such datasets. In response to these challenges, we introduce HLSFactory, a comprehensive framework designed to facilitate the curation and generation of high-quality HLS design datasets. HLSFactory has three main stages: 1) a design space expansion stage to elaborate single HLS designs into large design spaces using various optimization directives across multiple vendor tools, 2) a design synthesis stage to execute HLS and FPGA tool flows concurrently across designs, and 3) a data aggregation stage for extracting standardized data into packaged datasets for ML usage. This tripartite architecture ensures broad design space coverage via design space expansion and supports multiple vendor tools. Users can contribute to each stage with their own HLS designs and synthesis results and extend the framework itself with custom frontends and tool flows. We also include an initial set of built-in designs from common HLS benchmarks curated open-source HLS designs. We showcase the versatility and multi-functionality of our framework through six case studies: I) Design space sampling; II) Fine-grained parallelism backend speedup; III) Targeting Intel's HLS flow; IV) Adding new auxiliary designs; V) Integrating published HLS data; VI) HLS tool version regression benchmarking. Code at //github.com/sharc-lab/HLSFactory.
State space models and Mamba-based models have been increasingly applied across various domains, achieving state-of-the-art performance. This technical report introduces the first attempt to train a transferable Mamba model utilizing contrastive language-image pretraining (CLIP). We have trained Mamba models of varying sizes and undertaken comprehensive evaluations of these models on 26 zero-shot classification datasets and 16 out-of-distribution (OOD) datasets. Our findings reveal that a Mamba model with 67 million parameters is on par with a 307 million-parameter Vision Transformer (ViT) model in zero-shot classification tasks, highlighting the parameter efficiency of Mamba models. In tests of OOD generalization, Mamba-based models exhibit exceptional performance in conditions of OOD image contrast or when subjected to high-pass filtering. However, a Hessian analysis indicates that Mamba models feature a sharper and more non-convex landscape compared to ViT-based models, making them more challenging to train. The source code is available at //github.com/raytrun/mamba-clip.
Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.