Recent progresses on self-supervised 3D human action representation learning are largely attributed to contrastive learning. However, in conventional contrastive frameworks, the rich complementarity between different skeleton modalities remains under-explored. Moreover, optimized with distinguishing self-augmented samples, models struggle with numerous similar positive instances in the case of limited action categories. In this work, we tackle the aforementioned problems by introducing a general Inter- and Intra-modal Mutual Distillation (I$^2$MD) framework. In I$^2$MD, we first re-formulate the cross-modal interaction as a Cross-modal Mutual Distillation (CMD) process. Different from existing distillation solutions that transfer the knowledge of a pre-trained and fixed teacher to the student, in CMD, the knowledge is continuously updated and bidirectionally distilled between modalities during pre-training. To alleviate the interference of similar samples and exploit their underlying contexts, we further design the Intra-modal Mutual Distillation (IMD) strategy, In IMD, the Dynamic Neighbors Aggregation (DNA) mechanism is first introduced, where an additional cluster-level discrimination branch is instantiated in each modality. It adaptively aggregates highly-correlated neighboring features, forming local cluster-level contrasting. Mutual distillation is then performed between the two branches for cross-level knowledge exchange. Extensive experiments on three datasets show that our approach sets a series of new records.
Knowledge distillation is often used to transfer knowledge from a strong teacher model to a relatively weak student model. Traditional methods include response-based methods and feature-based methods. Response-based methods are widely used but suffer from lower upper limits of performance due to their ignorance of intermediate signals, while feature-based methods have constraints on vocabularies, tokenizers and model architectures. In this paper, we propose a liberal feature-based distillation method (LEAD). LEAD aligns the distribution between the intermediate layers of teacher model and student model, which is effective, extendable, portable and has no requirements on vocabularies, tokenizers, or model architectures. Extensive experiments show the effectiveness of LEAD on widely-used benchmarks, including MS MARCO Passage Ranking, TREC 2019 DL Track, MS MARCO Document Ranking and TREC 2020 DL Track. Our code is available in //github.com/microsoft/SimXNS/tree/main/LEAD.
Causal representation learning has emerged as the center of action in causal machine learning research. In particular, multi-domain datasets present a natural opportunity for showcasing the advantages of causal representation learning over standard unsupervised representation learning. While recent works have taken crucial steps towards learning causal representations, they often lack applicability to multi-domain datasets due to over-simplifying assumptions about the data; e.g. each domain comes from a different single-node perfect intervention. In this work, we relax these assumptions and capitalize on the following observation: there often exists a subset of latents whose certain distributional properties (e.g., support, variance) remain stable across domains; this property holds when, for example, each domain comes from a multi-node imperfect intervention. Leveraging this observation, we show that autoencoders that incorporate such invariances can provably identify the stable set of latents from the rest across different settings.
The promotion of large-scale applications of reinforcement learning (RL) requires efficient training computation. While existing parallel RL frameworks encompass a variety of RL algorithms and parallelization techniques, the excessively burdensome communication frameworks hinder the attainment of the hardware's limit for final throughput and training effects on a single desktop. In this paper, we propose Spreeze, a lightweight parallel framework for RL that efficiently utilizes a single desktop hardware resource to approach the throughput limit. We asynchronously parallelize the experience sampling, network update, performance evaluation, and visualization operations, and employ multiple efficient data transmission techniques to transfer various types of data between processes. The framework can automatically adjust the parallelization hyperparameters based on the computing ability of the hardware device in order to perform efficient large-batch updates. Based on the characteristics of the "Actor-Critic" RL algorithm, our framework uses dual GPUs to independently update the network of actors and critics in order to further improve throughput. Simulation results show that our framework can achieve up to 15,000Hz experience sampling and 370,000Hz network update frame rate using only a personal desktop computer, which is an order of magnitude higher than other mainstream parallel RL frameworks, resulting in a 73% reduction of training time. Our work on fully utilizing the hardware resources of a single desktop computer is fundamental to enabling efficient large-scale distributed RL training.
Inferring causal structure from data is a challenging task of fundamental importance in science. Observational data are often insufficient to identify a system's causal structure uniquely. While conducting interventions (i.e., experiments) can improve the identifiability, such samples are usually challenging and expensive to obtain. Hence, experimental design approaches for causal discovery aim to minimize the number of interventions by estimating the most informative intervention target. In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function. We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines, surpassing them in the low-data regime.
Offline reinforcement learning (RL) faces a significant challenge of distribution shift. Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem, but this inhibits the exploration of the OOD region. Model-based offline RL, which uses the trained environment model to generate more OOD data and performs conservative policy optimization within that model, has become an effective method for this problem. However, the current model-based algorithms rarely consider agent robustness when incorporating conservatism into policy. Therefore, the new model-based offline algorithm with a conservative Bellman operator (MICRO) is proposed. This method trades off performance and robustness via introducing the robust Bellman operator into the algorithm. Compared with previous model-based algorithms with robust adversarial models, MICRO can significantly reduce the computation cost by only choosing the minimal Q value in the state uncertainty set. Extensive experiments demonstrate that MICRO outperforms prior RL algorithms in offline RL benchmark and is considerably robust to adversarial perturbations.
Many existing learning-based grasping approaches concentrate on a single embodiment, provide limited generalization to higher DoF end-effectors and cannot capture a diverse set of grasp modes. We tackle the problem of grasping using multiple embodiments by learning rich geometric representations for both objects and end-effectors using Graph Neural Networks. Our novel method - GeoMatch - applies supervised learning on grasping data from multiple embodiments, learning end-to-end contact point likelihood maps as well as conditional autoregressive predictions of grasps keypoint-by-keypoint. We compare our method against baselines that support multiple embodiments. Our approach performs better across three end-effectors, while also producing diverse grasps. Examples, including real robot demos, can be found at geo-match.github.io.
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods. We summarize these methods into three categories: generative-based, contrastive-based, and adversarial-based. All methods can be further divided into ten subcategories. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.
Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.