Exact Bayesian inference on state-space models~(SSM) is in general untractable, and unfortunately, basic Sequential Monte Carlo~(SMC) methods do not yield correct approximations for complex models. In this paper, we propose a mixed inference algorithm that computes closed-form solutions using belief propagation as much as possible, and falls back to sampling-based SMC methods when exact computations fail. This algorithm thus implements automatic Rao-Blackwellization and is even exact for Gaussian tree models.
We develop a new methodology for forecasting matrix-valued time series with historical matrix data and auxiliary vector time series data. We focus on time series of matrices with observations distributed on a fixed 2-D spatial grid, i.e., the spatio-temporal data, and an auxiliary time series of non-spatial vectors. The proposed model, Matrix AutoRegression with Auxiliary Covariates (MARAC), contains an autoregressive component for the historical matrix predictors and an additive component that maps the auxiliary vector predictors to a matrix response via tensor-vector product. The autoregressive component adopts a bi-linear transformation framework following Chen et al. (2021), significantly reducing the number of parameters. The auxiliary component posits that the tensor coefficient, which maps non-spatial predictors to a spatial response, contains slices of spatially-smooth matrix coefficients that are discrete evaluations of smooth functions from a Reproducible Kernel Hilbert Space (RKHS). We propose to estimate the model parameters under a penalized maximum likelihood estimation framework coupled with an alternating minimization algorithm. We establish the joint asymptotics of the autoregressive and tensor parameters under fixed and high-dimensional regimes. Extensive simulations and a geophysical application for forecasting the global Total Electron Content (TEC) are conducted to validate the performance of MARAC.
With the rapid development of large models, the need for data has become increasingly crucial. Especially in 3D object detection, costly manual annotations have hindered further advancements. To reduce the burden of annotation, we study the problem of achieving 3D object detection solely based on 2D annotations. Thanks to advanced 3D reconstruction techniques, it is now feasible to reconstruct the overall static 3D scene. However, extracting precise object-level annotations from the entire scene and generalizing these limited annotations to the entire scene remain challenges. In this paper, we introduce a novel paradigm called BA$^2$-Det, encompassing pseudo label generation and multi-stage generalization. We devise the DoubleClustering algorithm to obtain object clusters from reconstructed scene-level points, and further enhance the model's detection capabilities by developing three stages of generalization: progressing from complete to partial, static to dynamic, and close to distant. Experiments conducted on the large-scale Waymo Open Dataset show that the performance of BA$^2$-Det is on par with the fully-supervised methods using 10% annotations. Additionally, using large raw videos for pretraining,BA$^2$-Det can achieve a 20% relative improvement on the KITTI dataset. The method also has great potential for detecting open-set 3D objects in complex scenes. Project page: //ba2det.site.
We consider the problem of designing sample efficient learning algorithms for infinite horizon discounted reward Markov Decision Process. Specifically, we propose the Accelerated Natural Policy Gradient (ANPG) algorithm that utilizes an accelerated stochastic gradient descent process to obtain the natural policy gradient. ANPG achieves $\mathcal{O}({\epsilon^{-2}})$ sample complexity and $\mathcal{O}(\epsilon^{-1})$ iteration complexity with general parameterization where $\epsilon$ defines the optimality error. This improves the state-of-the-art sample complexity by a $\log(\frac{1}{\epsilon})$ factor. ANPG is a first-order algorithm and unlike some existing literature, does not require the unverifiable assumption that the variance of importance sampling (IS) weights is upper bounded. In the class of Hessian-free and IS-free algorithms, ANPG beats the best-known sample complexity by a factor of $\mathcal{O}(\epsilon^{-\frac{1}{2}})$ and simultaneously matches their state-of-the-art iteration complexity.
GFlowNets are probabilistic models that sequentially generate compositional structures through a stochastic policy. Among GFlowNets, temperature-conditional GFlowNets can introduce temperature-based controllability for exploration and exploitation. We propose \textit{Logit-scaling GFlowNets} (Logit-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed approaches introduced numerical challenges in the deep network training, since different temperatures may give rise to very different gradient profiles as well as magnitudes of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. Also, using Logit-GFN, GFlowNets can be improved by having better generalization capabilities in offline learning and mode discovery capabilities in online learning, which is empirically verified in various biological and chemical tasks. Our code is available at \url{//github.com/dbsxodud-11/logit-gfn}
Denoising diffusion probabilistic models (DDPMs) have recently taken the field of generative modeling by storm, pioneering new state-of-the-art results in disciplines such as computer vision and computational biology for diverse tasks ranging from text-guided image generation to structure-guided protein design. Along this latter line of research, methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a DDPM framework. However, such methods are unable to learn important geometric and physical properties of 3D molecules during molecular graph generation, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which negatively impacts their ability to effectively scale to datasets of large 3D molecules. In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset as well as for the larger GEOM-Drugs dataset. Importantly, we demonstrate that the geometry-complete denoising process GCDM learns for 3D molecule generation allows the model to generate realistic and stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but also that GCDM's geometric features can effectively be repurposed to directly optimize the geometry and chemical composition of existing 3D molecules for specific molecular properties, demonstrating new, real-world versatility of molecular diffusion models. Our source code and data are freely available at //github.com/BioinfoMachineLearning/Bio-Diffusion.
Extremely large aperture arrays can enable unprecedented spatial multiplexing in beyond 5G systems due to their extremely narrow beamfocusing capabilities. However, acquiring the spatial correlation matrix to enable efficient channel estimation is a complex task due to the vast number of antenna dimensions. Recently, a new estimation method called the "reduced-subspace least squares (RS-LS) estimator" has been proposed for densely packed arrays. This method relies solely on the geometry of the array to limit the estimation resources. In this paper, we address a gap in the existing literature by deriving the average spectral efficiency for a certain distribution of user equipments (UEs) and a lower bound on it when using the RS-LS estimator. This bound is determined by the channel gain and the statistics of the normalized spatial correlation matrices of potential UEs but, importantly, does not require knowledge of a specific UE's spatial correlation matrix. We establish that there exists a pilot length that maximizes this expression. Additionally, we derive an approximate expression for the optimal pilot length under low signal-to-noise ratio (SNR) conditions. Simulation results validate the tightness of the derived lower bound and the effectiveness of using the optimized pilot length.
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but comes with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, this research examines the implicitly recurrent nature of SNNs and investigates the influence of addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient based adversarial attacks.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.