We extend and combine several tools of the literature to design fast, adaptive, anytime and scale-free online learning algorithms. Scale-free regret bounds must scale linearly with the maximum loss, both toward large losses and toward very small losses. Adaptive regret bounds demonstrate that an algorithm can take advantage of easy data and potentially have constant regret. We seek to develop fast algorithms that depend on as few parameters as possible, in particular they should be anytime and thus not depend on the time horizon. Our first and main tool, isotuning, is a generalization of the idea of balancing the trade-off of the regret. We develop a set of tools to design and analyze such learning rates easily and show that they adapts automatically to the rate of the regret (whether constant, $O(\log T)$, $O(\sqrt{T})$, etc.) within a factor 2 of the optimal learning rate in hindsight for the same observed quantities. The second tool is an online correction, which allows us to obtain centered bounds for many algorithms, to prevent the regret bounds from being vacuous when the domain is overly large or only partially constrained. The last tool, null updates, prevents the algorithm from performing overly large updates, which could result in unbounded regret, or even invalid updates. We develop a general theory using these tools and apply it to several standard algorithms. In particular, we (almost entirely) restore the adaptivity to small losses of FTRL for unbounded domains, design and prove scale-free adaptive guarantees for a variant of Mirror Descent (at least when the Bregman divergence is convex in its second argument), extend Adapt-ML-Prod to scale-free guarantees, and provide several other minor contributions about Prod, AdaHedge, BOA and Soft-Bayes.
Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients. A common approach is local methods, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg). Local methods can exploit similarity between clients' data. However, in existing analyses, this comes at the cost of slow convergence in terms of the dependence on the number of communication rounds R. On the other hand, global methods, where clients simply return a gradient vector in each round (e.g., SGD), converge faster in terms of R but fail to exploit the similarity between clients even when clients are homogeneous. We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R while leveraging the similarity between clients. Using FedChain, we instantiate algorithms that improve upon previously known rates in the general convex and PL settings, and are near-optimal (via an algorithm-independent lower bound that we show) for problems that satisfy strong convexity. Empirical results support this theoretical gain over existing methods.
Recent advances in natural language processing (NLP) have led to strong text classification models for many tasks. However, still often thousands of examples are needed to train models with good quality. This makes it challenging to quickly develop and deploy new models for real world problems and business needs. Few-shot learning and active learning are two lines of research, aimed at tackling this problem. In this work, we combine both lines into FASL, a platform that allows training text classification models using an iterative and fast process. We investigate which active learning methods work best in our few-shot setup. Additionally, we develop a model to predict when to stop annotating. This is relevant as in a few-shot setup we do not have access to a large validation set.
We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be even worse than purely using ML predictions. In order to address the "how to learn" challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses -- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be even beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms.
Following the research agenda initiated by Munoz & Vassilvitskii [1] and Lykouris & Vassilvitskii [2] on learning-augmented online algorithms for classical online optimization problems, in this work, we consider the Online Facility Location problem under this framework. In Online Facility Location (OFL), demands arrive one-by-one in a metric space and must be (irrevocably) assigned to an open facility upon arrival, without any knowledge about future demands. We present an online algorithm for OFL that exploits potentially imperfect predictions on the locations of the optimal facilities. We prove that the competitive ratio decreases smoothly from sublogarithmic in the number of demands to constant, as the error, i.e., the total distance of the predicted locations to the optimal facility locations, decreases towards zero. We complement our analysis with a matching lower bound establishing that the dependence of the algorithm's competitive ratio on the error is optimal, up to constant factors. Finally, we evaluate our algorithm on real world data and compare our learning augmented approach with the current best online algorithm for the problem.
We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all $k$-vertex subgraphs of an $n$-vertex graph. When $k$ is not too large, we give nearly tight bounds for this local treewidth parameter; we also derive tight bounds for the local treewidth of noisy trees, trees where every non-edge is added independently with small probability. We apply our upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random graphs and noisy trees) for edge-removal problems centered around containing a contagious process evolving over a network. In these problems, our main parameter of study is $k$, the number of "infected" vertices in the network. For a certain range of parameters the running time of our algorithms on $n$-vertex graphs is $2^{o(k)}\textrm{poly}(n)$, improving upon the $2^{\Omega(k)}\textrm{poly}(n)$ performance of the best-known algorithms designed for worst-case instances of these edge deletion problems.
We demonstrate that merely analog transmissions and match filtering can realize the function of an edge server in federated learning (FL). Therefore, a network with massively distributed user equipments (UEs) can achieve large-scale FL without an edge server. We also develop a training algorithm that allows UEs to continuously perform local computing without being interrupted by the global parameter uploading, which exploits the full potential of UEs' processing power. We derive convergence rates for the proposed schemes to quantify their training efficiency. The analyses reveal that when the interference obeys a Gaussian distribution, the proposed algorithm retrieves the convergence rate of a server-based FL. But if the interference distribution is heavy-tailed, then the heavier the tail, the slower the algorithm converges. Nonetheless, the system run time can be largely reduced by enabling computation in parallel with communication, whereas the gain is particularly pronounced when communication latency is high. These findings are corroborated via excessive simulations.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.