亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning individualized treatment rules (ITRs) is an important topic in precision medicine. Current literature mainly focuses on deriving ITRs from a single source population. We consider the observational data setting when the source population differs from a target population of interest. Compared with causal generalization for the average treatment effect which is a scalar quantity, ITR generalization poses new challenges due to the need to model and generalize the rules based on a prespecified class of functions which may not contain the unrestricted true optimal ITR. The aim of this paper is to develop a weighting framework to mitigate the impact of such misspecification and thus facilitate the generalizability of optimal ITRs from a source population to a target population. Our method seeks covariate balance over a non-parametric function class characterized by a reproducing kernel Hilbert space and can improve many ITR learning methods that rely on weights. We show that the proposed method encompasses importance weights and overlap weights as two extreme cases, allowing for a better bias-variance trade-off in between. Numerical examples demonstrate that the use of our weighting method can greatly improve ITR estimation for the target population compared with other weighting methods.

相關內容

Cervical cancer is one of the most severe diseases threatening women's health. Early detection and diagnosis can significantly reduce cancer risk, in which cervical cytology classification is indispensable. Researchers have recently designed many networks for automated cervical cancer diagnosis, but the limited accuracy and bulky size of these individual models cannot meet practical application needs. To address this issue, we propose a Voting-Stacking ensemble strategy, which employs three Inception networks as base learners and integrates their outputs through a voting ensemble. The samples misclassified by the ensemble model generate a new training set on which a linear classification model is trained as the meta-learner and performs the final predictions. In addition, a multi-level Stacking ensemble framework is designed to improve performance further. The method is evaluated on the SIPakMed, Herlev, and Mendeley datasets, achieving accuracies of 100%, 100%, and 100%, respectively. The experimental results outperform the current state-of-the-art (SOTA) methods, demonstrating its potential for reducing screening workload and helping pathologists detect cervical cancer.

Accurate segmentation of brain vessels is crucial for cerebrovascular disease diagnosis and treatment. However, existing methods face challenges in capturing small vessels and handling datasets that are partially or ambiguously annotated. In this paper, we propose an adaptive semi-supervised approach to address these challenges. Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement. Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics. By leveraging the partially and ambiguously labeled data, which only annotates the main vessels, our method achieves impressive segmentation performance on mislabeled fine vessels, showcasing its potential for clinical applications.

Covert communication is focused on hiding the mere existence of communication from unwanted listeners via the physical layer. In this work, we consider the problem of perfect covert communication in wireless networks. Specifically, harnessing an Intelligent Reflecting Surface (IRS), we turn our attention to schemes that allow the transmitter to completely hide the communication, with zero energy at the unwanted listener (Willie) and hence zero probability of detection. Applications of such schemes go beyond simple covertness, as we prevent detectability or decoding even when the codebook, timings, and channel characteristics are known to Willie. That is, perfect covertness also ensures Willie is unable to decode, even assuming communication took place and knowing the codebook. We define perfect covertness, give a necessary and sufficient condition for it in IRS-assisted communication, and define the optimization problem. For $N=2$ IRS elements, we analyze the probability of finding a solution and derive its closed form. We then investigate the problem of $N>2$ IRS elements by analyzing the probability of such a zero-detection solution. We prove that this probability converges to $1$ as the number of IRS tends to infinity. We provide an iterative algorithm to find a perfectly covert solution and prove its convergence. The results are also supported by simulations, showing that a small amount of IRS elements allows for a positive rate at the legitimate user yet with zero probability of detection at an unwanted listener.

Segmentation masks of pathological areas are useful in many medical applications, such as brain tumour and stroke management. Moreover, healthy counterfactuals of diseased images can be used to enhance radiologists' training files and to improve the interpretability of segmentation models. In this work, we present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map. To do so, we start by considering a saliency map that approximately covers the pathological areas, obtained with ACAT. Then, we propose a technique that allows to perform targeted modifications to these regions, while preserving the rest of the image. In particular, we employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Diffusion Implicit Model (DDIM) at each step of the sampling process. DDPM is used to modify the areas affected by a lesion within the saliency map, while DDIM guarantees reconstruction of the normal anatomy outside of it. The two parts are also fused at each timestep, to guarantee the generation of a sample with a coherent appearance and a seamless transition between edited and unedited parts. We verify that when our method is applied to healthy samples, the input images are reconstructed without significant modifications. We compare our approach with alternative weakly supervised methods on IST-3 for stroke lesion segmentation and on BraTS2021 for brain tumour segmentation, where we improve the DICE score of the best competing method from $0.6534$ to $0.7056$.

The current work investigates the capability of Large language models (LLMs) that are explicitly trained on large corpuses of medical knowledge (Med-PaLM 2) to predict psychiatric functioning from patient interviews and clinical descriptions without being trained to do so. To assess this, n = 145 depression and n =115 PTSD assessments and n = 46 clinical case studies across high prevalence/high comorbidity disorders (Depressive, Anxiety, Psychotic, trauma and stress, Addictive disorders) were analyzed using prompts to extract estimated clinical scores and diagnoses. Results demonstrate that Med-PaLM 2 is capable of assessing psychiatric functioning across a range of psychiatric conditions with the strongest performance being the prediction of depression scores based on standardized assessments (Accuracy range= 0.80 - 0.84) which were statistically indistinguishable from human clinical raters t(1,144) = 1.20; p = 0.23. Results show the potential for general clinical language models to flexibly predict psychiatric risk based on free descriptions of functioning from both patients and clinicians.

Dietary assessment is a key contributor to monitoring health status. Existing self-report methods are tedious and time-consuming with substantial biases and errors. Image-based food portion estimation aims to estimate food energy values directly from food images, showing great potential for automated dietary assessment solutions. Existing image-based methods either use a single-view image or incorporate multi-view images and depth information to estimate the food energy, which either has limited performance or creates user burdens. In this paper, we propose an end-to-end deep learning framework for food energy estimation from a monocular image through 3D shape reconstruction. We leverage a generative model to reconstruct the voxel representation of the food object from the input image to recover the missing 3D information. Our method is evaluated on a publicly available food image dataset Nutrition5k, resulting a Mean Absolute Error (MAE) of 40.05 kCal and Mean Absolute Percentage Error (MAPE) of 11.47% for food energy estimation. Our method uses RGB image as the only input at the inference stage and achieves competitive results compared to the existing method requiring both RGB and depth information.

Inverse propensity weighting (IPW) is a popular method for estimating treatment effects from observational data. However, its correctness relies on the untestable (and frequently implausible) assumption that all confounders have been measured. This paper introduces a robust sensitivity analysis for IPW that estimates the range of treatment effects compatible with a given amount of unobserved confounding. The estimated range converges to the narrowest possible interval (under the given assumptions) that must contain the true treatment effect. Our proposal is a refinement of the influential sensitivity analysis by Zhao, Small, and Bhattacharya (2019), which we show gives bounds that are too wide even asymptotically. This analysis is based on new partial identification results for Tan (2006)'s marginal sensitivity model.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

北京阿比特科技有限公司