亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Satellite-based remote sensing missions have revolutionized our understanding of the Ocean state and dynamics. Among them, spaceborne altimetry provides valuable measurements of Sea Surface Height (SSH), which is used to estimate surface geostrophic currents. However, due to the sensor technology employed, important gaps occur in SSH observations. Complete SSH maps are produced by the altimetry community using linear Optimal Interpolations (OI) such as the widely-used Data Unification and Altimeter Combination System (DUACS). However, OI is known for producing overly smooth fields and thus misses some mesostructures and eddies. On the other hand, Sea Surface Temperature (SST) products have much higher data coverage and SST is physically linked to geostrophic currents through advection. We design a realistic twin experiment to emulate the satellite observations of SSH and SST to evaluate interpolation methods. We introduce a deep learning network able to use SST information, and a trainable in two settings: one where we have no access to ground truth during training and one where it is accessible. Our investigation involves a comparative analysis of the aforementioned network when trained using either supervised or unsupervised loss functions. We assess the quality of SSH reconstructions and further evaluate the network's performance in terms of eddy detection and physical properties. We find that it is possible, even in an unsupervised setting to use SST to improve reconstruction performance compared to SST-agnostic interpolations. We compare our reconstructions to DUACS's and report a decrease of 41\% in terms of root mean squared error.

相關內容

 Secure Shell(SSH)為創建在(zai)應用層和傳(chuan)輸層基礎(chu)上的安全協議。

Hospitals, due to their complexity and unique requirements, play a pivotal role in global energy consumption patterns. This study conducted a comprehensive literature review, utilizing the PRISMA framework, of articles that employed machine learning and artificial intelligence techniques for predicting energy consumption in hospital buildings. Of the 1884 publications identified, 17 were found to address this specific domain and have been thoroughly reviewed to establish the state-of-the-art and identify gaps where future research is needed. This review revealed a diverse range of data inputs influencing energy prediction, with occupancy and meteorological data emerging as significant predictors. However, many studies failed to delve deep into the implications of their data choices, and gaps were evident regarding the understanding of time dynamics, operational status, and preprocessing methods. Machine learning, especially deep learning models like ANNs, have shown potential in this domain, yet they come with challenges, including interpretability and computational demands. The findings underscore the immense potential of AI in optimizing hospital energy consumption but also highlight the need for more comprehensive and granular research. Key areas for future research include the optimization of ANN approaches, new optimization and data integration techniques, the integration of real-time data into Intelligent Energy Management Systems, and increasing focus on long-term energy forecasting.

Current methods based on Neural Radiance Fields (NeRF) significantly lack the capacity to quantify uncertainty in their predictions, particularly on the unseen space including the occluded and outside scene content. This limitation hinders their extensive applications in robotics, where the reliability of model predictions has to be considered for tasks such as robotic exploration and planning in unknown environments. To address this, we propose a novel approach to estimate a 3D Uncertainty Field based on the learned incomplete scene geometry, which explicitly identifies these unseen regions. By considering the accumulated transmittance along each camera ray, our Uncertainty Field infers 2D pixel-wise uncertainty, exhibiting high values for rays directly casting towards occluded or outside the scene content. To quantify the uncertainty on the learned surface, we model a stochastic radiance field. Our experiments demonstrate that our approach is the only one that can explicitly reason about high uncertainty both on 3D unseen regions and its involved 2D rendered pixels, compared with recent methods. Furthermore, we illustrate that our designed uncertainty field is ideally suited for real-world robotics tasks, such as next-best-view selection.

Active reconfigurable intelligent surface (ARIS) is a promising way to compensate for multiplicative fading attenuation by amplifying and reflecting event signals to selected users. This paper investigates the performance of ARIS assisted non-orthogonal multiple access (NOMA) networks over cascaded Nakagami-m fading channels. The effects of hardware impairments (HIS) and reflection coefficients on ARIS-NOMA networks with imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC) are considered. More specifically, we develop new precise and asymptotic expressions of outage probability and ergodic data rate with ipSIC/pSIC for ARIS-NOMA-HIS networks. According to the approximated analyses, the diversity orders and multiplexing gains for couple of non-orthogonal users are attained in detail. Additionally, the energy efficiency of ARIS-NOMA-HIS networks is surveyed in delay-limited and delay-tolerant transmission schemes. The simulation findings are presented to demonstrate that: i) The outage behaviors and ergodic data rates of ARIS-NOMA-HIS networks precede that of ARIS aided orthogonal multiple access (OMA) and passive reconfigurable intelligent surface (PRIS) aided OMA; ii) As the reflection coefficient of ARIS increases, ARIS-NOMA-HIS networks have the ability to provide the strengthened outage performance; and iii) ARIS-NOMA-HIS networks are more energy efficient than ARIS/PRIS-OMA networks and conventional cooperative schemes.

We propose a solution for linear inverse problems based on higher-order Langevin diffusion. More precisely, we propose pre-conditioned second-order and third-order Langevin dynamics that provably sample from the posterior distribution of our unknown variables of interest while being computationally more efficient than their first-order counterpart and the non-conditioned versions of both dynamics. Moreover, we prove that both pre-conditioned dynamics are well-defined and have the same unique invariant distributions as the non-conditioned cases. We also incorporate an annealing procedure that has the double benefit of further accelerating the convergence of the algorithm and allowing us to accommodate the case where the unknown variables are discrete. Numerical experiments in two different tasks in communications (MIMO symbol detection and channel estimation) and in three tasks for images showcase the generality of our method and illustrate the high performance achieved relative to competing approaches (including learning-based ones) while having comparable or lower computational complexity.

Pre-trained Foundation Models (PFMs) have ushered in a paradigm-shift in Artificial Intelligence, due to their ability to learn general-purpose representations that can be readily employed in a wide range of downstream tasks. While PFMs have been successfully adopted in various fields such as Natural Language Processing and Computer Vision, their capacity in handling geospatial data and answering urban questions remains limited. This can be attributed to the intrinsic heterogeneity of geospatial data, which encompasses different data types, including points, segments and regions, as well as multiple information modalities, such as a spatial position, visual characteristics and textual annotations. The proliferation of Volunteered Geographic Information initiatives, and the ever-increasing availability of open geospatial data sources, like OpenStreetMap, which is freely accessible globally, unveil a promising opportunity to bridge this gap. In this paper, we present CityFM, a self-supervised framework to train a foundation model within a selected geographical area of interest, such as a city. CityFM relies solely on open data from OSM, and produces multimodal representations of entities of different types, incorporating spatial, visual, and textual information. We analyse the entity representations generated using our foundation models from a qualitative perspective, and conduct quantitative experiments on road, building, and region-level downstream tasks. We compare its results to algorithms tailored specifically for the respective applications. In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.

We consider the problem of spectral clustering under group fairness constraints, where samples from each sensitive group are approximately proportionally represented in each cluster. Traditional fair spectral clustering (FSC) methods consist of two consecutive stages, i.e., performing fair spectral embedding on a given graph and conducting $k$means to obtain discrete cluster labels. However, in practice, the graph is usually unknown, and we need to construct the underlying graph from potentially noisy data, the quality of which inevitably affects subsequent fair clustering performance. Furthermore, performing FSC through separate steps breaks the connections among these steps, leading to suboptimal results. To this end, we first theoretically analyze the effect of the constructed graph on FSC. Motivated by the analysis, we propose a novel graph construction method with a node-adaptive graph filter to learn graphs from noisy data. Then, all independent stages of conventional FSC are integrated into a single objective function, forming an end-to-end framework that inputs raw data and outputs discrete cluster labels. An algorithm is developed to jointly and alternately update the variables in each stage. Finally, we conduct extensive experiments on synthetic, benchmark, and real data, which show that our model is superior to state-of-the-art fair clustering methods.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司